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A complete Intermediate Neglect of Differential Overlap model suitable for the
examination of transition metal complexes is described. The model is charac-
terized by the inclusion of all the one-center exchange terms necessary for
rotational invariance and accurate spectroscopic predictions, as well as an
accurate description of integrals involving 3d atomic orbitals. The model is
within the unrestricted Hartree-Fock formalism, and a method for spin
purification is described. Problems with convergence of the self-consistent field
are discussed, and a method that has been found successful in aiding the
convergence is outlined.

The model has been applied to many transition metal systems. In this article
the results of calculations on the chlorides of Fe, Co and Cu are described. The
results of these calculations are compared with experiment, and with the results
of calculations by other methods.

Key words: INDO method for transition metals — Copper chloride - Iron
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1. Introduction

It is the purpose of this work to examine an approximate molecular orbital method
capable of yielding useful information on the electronic structure of transition metal
complexes, as well as yielding information and experience on the application of the
molecular orbital approach itself, to such complexes. This report describes an
Intermediate Neglect of Differential Overlap (INDO) model that is reasonably
successful in describing the ground state properties of a large variety of transition
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metal complexes. A subsequent paper will deal with the calculation of excited
states.

Transition metal compounds are very often characterized by a high symmetry,
suggesting that soundly developed and rationally parametrized molecular models
should be as successful, if not more so, in describing the results of ab initio molecular
orbital calculations as they are in describing molecules of hydrogen and the first
row. Surely this high symmetry is behind the success of the crystal field and ligand
field descriptions of such complexes [1]. The Iterative Extended Hiickel theories
have also been quite successful in yielding information on transition metal com-
plexes [2, 3]; their success is due to a proper accounting for the molecular topology,
and a high degree of parametrization on atomic data.

The Intermediate Neglect of Differential Overlap model is examined here [4]. This
is one of the simplest theories that attempts to mimic in a more or less correct
fashion the proper Born—-Oppenheimer Hamiltonian. A simpler theory in the same
spirit would be the Complete Neglect of Differential Overlap model (CNDO) [5],
which differs from INDO by omitting the one-centre two-electron exchange terms.
As we anticipate that differences between the energies of different spin states will
be of interest, such a simplification will not be satisfactory. It is exactly these one-
centre exchange terms that distinguish the various atomic term energies within an
electronic configuration.

There are several rather unique problems met in studying the molecular orbital
theory of transition metal complexes that are not met in dealing with molecules
containing hydrogen and the first row atoms. The first of these is that the number
of one-centre exchange integrals increases so greatly as to change the traditional
zero-differential overlap method of formation of the Fock matrix in a direct
fashion to methods in which the many integrals are calculated and ordered but
once. A second difference is that metal d orbitals cannot be described accurately
enough for most purposes by a single Slater type orbital and subsequent parameter-
ization. Such an approach is “traditional” for other orbitals, or for d orbitals in
second row atoms. Perhaps the most troublesome problem is that self-consistent
field calculations on transition metal complexes seldom converge if the calculated
molecular orbitals are used for the subsequent cycle, and if they do, often converge
to an excited state.

Several other investigations have been made of Zero Differential Overlap (ZDO)
models, and we will have recourse to discuss some of these methods later. This
model will differ from all of them in the treatment of the one-centre metal exchange
integrals, the structure of the d symmetry atomic orbitals, and, of course, the
parameterization. Models that have proven useful and are not of the ZDO type
are the Extended Hiickel Methods of Zerner and Gouterman [2] and of Hoffmann
[3], and the method of Hall and Fenske [6] which is based upon the Mulliken
approximation for integrals.

After some rather extensive use of the INDO model, it is, perhaps, honest to note
that the high symmetry and weak interactions that characterize transition metal
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compounds and that are the reasons for the success of simpler models, may well
make methods that purport to more accuracy less useful unless refined. Models
such as crystal field theory and the Extended Hiickel theory might be said to lead
to “physical orbitals™ in which eigenvalues correspond more or less to ionization
potentials or electron affinities, and orbital energy gaps correspond to spectral
transitions, either directly, or perhaps, after simple correction [7]. Koopmans’
approximation, however, which relates the negative of the orbital eigenvalue to an
ionization potential, appears very unreliable in estimating ionization processes
from either ab initio molecular orbital calculations or those obtained using the
INDO model. Electrons removed from orbitals centred on metal atoms are often
accompanied by 10-20 eV of relaxation energy, while those removed from ligand
valence orbitals are accompanied by a relaxation of typically less than 1 eV.
Because of this relaxation, the simple “intuitive” crystal field picture with metal
d orbitals as the highest occupied, is often not obtained. Singly occupied metal d
“MO’s” are often buried below doubly occupied ligand MO’s, even though the
former are most easily ionized.

Worse than the loss of these simple ““ physical orbitals™ is the realization that the
role of configuration interaction (electron correlation) is very important when the
interactions between atoms are weak. Typically a transition metal is weakly
coupled to its ligands; very often a very simple Configuration Interaction (CI)
completely changes the INDO description of the ground state. Without a great
deal of care, self-consistent field molecular orbital calculations will converge to
any one of several near lying states—not necessarily that of lowest energy, or to a
state of cracked symmetry, again indicating an important role for CI. It may well
prove that self-consistent field molecular orbital models, by themselves, will be
of only limited utility in describing the electronic structure of transition metal
complexes.

2. Description of the Method
We seek solutions of the molecular electronic Hamiltonian
Hy = E)

where ¢ is a function of all # valence electrons of the system. ¢ will be approximated
as a single Slater determinant

= [(D)$2(2) - ()],
where {¢;} are the molecular orbitals (MO’s). For a closed shell system this will
lead to the usual Restricted Hartree-Fock procedure (RHF) [8]; for an open shell
system such a description will lead to the Unrestricted Hartree-Fock formalism
(UHF) [9]. The methods developed would be equally as appropriate for RHF
calculations on open shell systems [10], but this has, as yet, not been examined.

The molecular orbital ¢, is expanded as a linear combination of atomic orbitals
as is conventional in the Roothaan-Hall recipe [8, 11]

$1 = > CiaXa @)
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where {y,} are the basis of atomic orbitals. Within the INDO approximation such
orbitals are envisioned to be strongly orthogonal and are characterized in integrals
by

XA dr(1) = xEDxA() dr(D3xs @
and
Okt | 2340 = [ (1) dr @D Dz 22
axs | xvx8) A=B
= 3
{(xaxi | x7%3)8es8s A # B @

where x2 “belongs” to atom A, x& to atom B. Equation (2) is the definition of the
zero differential diatomic overlap approximation, Eq. (3) sets to zero two-centre
two-electron terms involving one-centre differential overlap—the terms that
distinguish the Neglect of Differential Diatomic Overlap model (NDDO) from
INDO. It is hard to envision a basis set of atomic orbitals that has the property of
Eq. (3); rather this approximation is usually justified by the relatively small size
of (x2x3 | xBx3) to (x2x4 | x3x%), and the introduction of semi-empirical parameters
that compensate for errors introduced by assuming Eq. (3).

Application of the variational principle yields the two matrix equations (4), (9).

FXCF = ACHeX )
Ffv =Ty — Z ZB(Xulngl{Xv) + z [PM(XuXv l XoXn) — Pf)\(XuXo l XvXA)]

B g.A
T, = (Xul_%VZIXv) + Vuv (5)

where the superscript K refers to « or 8 electron spin. F is the Fock or energy
matrix, A,, = (x. | x»), the orbital overlap and P = P* + P’, the first order
Fock-Dirac density matrix defined over the MO coefficients C* as

MO

PE = > NECECE,

with NE = 0 or 1, the occupancy of #%.
Under the INDO model, Egs. (5) become

Fxﬁt = z ZB(XMIRB !Xu) + ZPGGVM - Pfu')’uu + AG,, peA
B#A
Ffv = Bu — uv'yuv +AG,, p#v
U, = (Xu{_lvz — ZalRalxs) + Vi (6)

o= (i l_’l‘V2|X ) — SABZZC(X;?[RCIIX

A A
AGQ\? = {Z [PUA(P‘V]O')\) - ng\ :“U|VA)] + vayuv - Z Paa')’uasuv}SAB-
a,A g

In Eq. (6) y.o = (XuX. | XoXo)» Where ¥, is the s symmetry equivalent of y,: for a
one-centre integral y,, = F%(uo), the Slater-Condon integral {12]. The *“A” above
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the summation indicates the sum is confined to only x, on atom “A”. With this
definition, and AG,, = 0, the above are the Complete Neglect of Zero Differential
(CNDO) Egs. (5). For atoms with basis sets of s and p symmetry, the AG,, are
reasonably simple [4]. The inclusion of d symmetry orbitals, however, complicate
these terms considerably. Rather than treat these terms in a general fashion in a
double summation over integrals for each diagonal F,, for each cycle as is con-
ventional for ZDO theories, it now becomes advantageous, as it does in ab initio
calculations, to order and store the two electron integrals once. Each integral is
then positioned in all places that it occurs in the two-electron G matrix as it is read.
A summary of these INDO integrals appears in the Appendix. For an s and p
basis these integrals are complete: for an s, p and d basis only those integrals
corresponding to Slater~Condon G¥ or F¥ are kept.

Several investigators have suggested that “INDO” be interpreted as a theory that
only keeps corrections corresponding to exchange (x,x, [ x.x,) and Coulomb
Gruxu | xvxv) type integrals, For an atom with an s, p basis, this is complete, but for
atoms with d atomic orbitals the method is then rotationally variant. This variance
is empirically small [13, 14], and can be removed by suitably averaging over classes
of integrals [15].

We do not drop mixed integrals of the G¥ or F¥ type, for it is difficult to envision
any basis set that avoids them. Although their omission in the SCF calculation
does, indeed, seem small, we have found them to have a very important effect in
the calculation of excited state transition energies, and in the calculation of
correlation energy.

With these approximations, the formation of the Fock matrix is proportional to
the number of integrals calculated, roughly #%, where #n is the size of the atomic
orbital basis. Execution time of the SCF step is thus governed by the repeated
solutions (diagonalizations) of Eq. (4).

3. Specification of Parameters
3.1. Basis

Equations (6) are general for a basis set of functions that display INDO. Insofar
as the integrals of Eqgs. (6) can be obtained empirically we need never specify the
exact nature of the basis that yield Eqs. (2) and (3), and the value of the non-zero
integrals. All integrals, however, cannot be found empirically for this work and as
in the original CNDO and INDO model of Pople and co-workers [4, 5] we choose,
for the present, a basis of Slater Type Orbitals (STO’s), then envision them as
symmetrically orthogonalized to one another, or midway along a bond “cut off
in such a fashion as to make Eq. (2) reasonable [16]. Since the values of two-
electron matrix elements from such a basis does not seem to vary greatly from their
value obtained with STO’s (one-centre integrals are increased while two-centre are
decreased, leaving the sums of Eq. (6) nearly constant [17]), the latter, much simpler
evaluation is used. This is the conventional choice for the CNDO/2 and INDO/2
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methods, but methods that are accurate in reproducing electronic spectra [18-20]
and the popular MINDO methods [21, 22] choose these integrals and their
functional form semi-empirically.

A basis set of single Slater-type orbitals (STO) is characterized by the choice of
exponential constants. For hydrogen a value of 1.2 is taken. For elements of the
first and second rows we use the exponents derived from Slater’s rules [23], as do
the original CNDO and INDO methods. More accurate values are available from
the work of Clementi and Raimondi [24], but our results prove relatively insensitive
to such minor changes.

For the elements of the third row, however, the exponents derived from Slater’s
rules are questionable. Also, single Slater orbitals are known not to be accurate
representations of the d functions [25-28], as they concentrate too much electron
density in the bonding region, causing an overestimation of the effective overlap,
and the density beyond the bonding region falls off too rapidly with distance.
Although linear combinations of STO’s (““multiple-{” functions) are desirable for
describing any atomic orbital, it appears that they are essential for describing the
3d orbitals. Nevertheless we would like to retain the simplicity of “single-{”
functions, as adopting multiple-{ representations greatly increases the length of
the calculations, and is not in keeping with the spirit of the previous approximations.

In adopting this approach we realize that we cannot accurately represent the Hartree—
Fock 3d functions everywhere, but we hope to be able to preserve the essential
features, notably at R = 0 and in the bonding region. For R = 0, the functions
are used in the evaluation of the F?° integrals, and in the bonding region the
functions are used to calculate the overlap integrals, which in turn are used to
estimate the resonance integrals.

Using

F(d, d) = 0.258138 34(0)

@)
FO(s, 5) = 0.2009057,,(0)

it is possible to calculate the best single exponents which will yield the F°-values
calculated from the Watson near-Hartree-Fock multiple-{ functions [25]. In
order to match the Watson near-Hartree-Fock 3d functions in both the bonding
region and at R = 0 using single-{ functions, we define {3; as a function of the
distance from the metal atom, R, and evaluate the exponent, {34(R), for the
necessary R values. In doing this, we recognize that such a function may well not
reproduce all the overlap interactions simultaneously, for in general, each of the
(s|dy), (p, | d,) and (p, | d;) overlap integrals will suggest a different 3, value
for any given R. The single {5, that we would wish to use for all overlap integrals
is a weighted average of the three exponents which reproduce the Watson overlaps
[29, 30]. A procedure which weights each of the three exponents by the appropriate
overlap could be used, but we choose to weigh the (p, | 4,) overlap by two, as it
occurs twice in the calculation. From Table 1, it can be seen that the errors in the
individual types of overlap are not large using single {5, function for any given R.
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Table 1. Nitrogen-metal overlap at various distances using the 3d values of Equation 8

Overlap Percentage error®
Distance
Metal (in A) (s ] dy) (o | oy (pr|dy) s, d, Pords Dy dy
Ti 1.50 0.2361 0.2172 0.1908 10.9 —23.5 11.0
2.054 0.1346 0.1541 0.0727 6.8 —~11.8 8.1
3.00 0.0285 0.0376 0.0097 4.1 —6.0 6.0
Fe 1.50 0.1487 0.1757 0.1178 9.9 —16.8 11.0
2.054 0.0700 0.0958 0.0366 5.4 —-9.7 7.7
3.00 0.0102 0.0154 0.0034 3.3 —4.7 5.7
Zn 1.50 0.1024 0.1370 0.0797 6.4 —14.1 8.2
2.054 0.0405 0.0606 0.0207 4.0 -7.2 6.6
3.00 0.0045 0.0071 0.0014 2.2 —-3.2 4.5

o Error = [Overlap (Watson) — Overlap (Smgle)]

Overlap (Watson)

Several functional forms for {3,(R) have been examined to reproduce these single
averaged exponents. Most successful is the simple form:

{sa(R) = a + b/R for [534(R) < {34(0)
Laad(R) = L34(0) elsewhere.

Although this form has the disadvantage of being discontinuous, it has the correct
asymptotic behaviour and the greatest accuracy at 1.5 A, 2.054 A and 3.0 A of the
simple forms we have tried. Table 2 gives the values of the variables g and b, as
well as the calculated exponential values.

(®)

The use of Eq.(8), perhaps, requires some further comment. It is chosen for
simplicity, and merely as a trick to allow a single-{ representation of a multiple-£
function. That is, we envision that we are using the multiple- functions given by
Watson, but are approximating the integrals by the use of Eq. (8). No further
interpretation makes sense.

Since a single value for Z,; appears to be reasonably accurate at R = 0 and at
R = 2.054 A, we adopt Zerner’s ““best single” values [29]. We set the 4p exponent
equal to that of the 4s, in analogy with the first and second row elements. Alternate
exponents are available from the work of Richardson, Powell and Nieuwpoort [26]
but these 4p functions prove too diffuse, leading in many cases to negative orbital
electronic populations [29]. Labarre and co-workers [31, 32] adopt 4p exponents
even smaller than those of Nieuwpoort in their CNDO/2 method for transition
metals in order to reduce the 4p electronic populations. They have chosen, however,
to compare their density over orthogonalized orbitals with the results of a popula-
tion analysis from ab initio results, a procedure the validity of which is suspect. We
believe their 4p orbitals are too diffuse.

Clack and co-workers [13] adopt the Zerner set of 3d and 4s = 4p exponents, after
extensive comparative studies using Slater, Clementi’s best single [24], and Burns’
[33] exponents. This introduces an error in the evaluation of the one-centre 3d
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Table 2. Constants for the functional form a + b/R of {34(R) and some resulting values

Atom a b R
1.50 2.054¢ 3.00 4.00 o0

Ca° 1.5097 0.8105

Sce¢ 1.6102 0.8961

Ti 1.71016 0.96428 42,3530 2.1796 2.0316 1.9512 1.7102
€ 2.3799 2.1678 1.9951 1.9081 1.7316

A% 1.81119 1.04854 42,5102 2.3217 2.1607 2.0733 1.8112
€ 2.5316 2.3137 2.1296 1.8289

Cr 1.91367 1.10712 42,6518 2.4527 2.2827 2.1905 1.9137
® 2.6651 2.4509 2.2586 1.9262

Mn 2.0152 1.17510 42.7986 2.5873 2.4069 2.3090 2.0152
® 2,8061 2.5890 2.3892 2.0235

Fe 2.11093 1.22250 42,9259 2.7061 2.5184 2.4166 2.1109
€ 2.,9382 2.7009 2.5015 2.3948 2.1208

Co 2.21589 1.23008 43,0359 2.8148 2.6259 2.5234 2.2159
€ 3,0362 2.8190 2.6192 2.2181

Ni 2.31682 1.26242 43,1584 2.9314 2.7376 2.6324 2.3168
©3,1544 2.9371 2.7374 2.3154

Cu 2.41805 1.29449 43,2810 3.0483 2.8495 2.7417 2.4181
©3.2725 3.0552 2.8565 2.4127

Zn 2.51974 1.33244 43,4080 3.1684 2.9639 2.8529 2.5197

©3.3944 3.1769 2.9788 2.8716 2.5100

¢ From quadratic extrapolation.

¢ Calculated from {34(R) = a + b/R.

® {34 averaged to match Watson overlap (see text).

f Note that the {34(2.054) values are virtually the same as the Zerner “ best single”” exponents,
Ref. [29].

integrals, F°(dd). Although part of this discrepancy will be removed by cancellation
between the one-electron and two-electron energy matrices, it will be sizeable for
transition elements with a large net charge.

In concluding this section, our choice of transition metal exponents give a nearly
““exact” result for the only one-centred integral evaluated, F° [25]. At bonding
distances, the only integral evaluated will be the overlap integral and the two-
centred Coulomb integrals. Here we will weight this overlap by empirical factors
in forming the resonance integrals, reducing the effect of any errors. At large inter-
nuclear separation (where the overlap, and thus errors, are small anyway), the most
diffuse of the multiple-¢ functions will dominate, and the parameter “a” of Eq. (8)
is chosen to yield this correctly. F° is the accurate Watson value by our use of
Eq. (7). The two-centred Coulomb integrals at bonding distances seem accurately
represented, and at further distances are essentially 1/R.

3.2. One-Centre Core Integrals

The one-centre core integrals U,, are defined in Eq. (6). While these integrals could
be calculated over an orthogonalized basis and corrected by a core pseudo-
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potential V,, that simulates the repulsion of the inner shell electrons [34], con-
ventional CNDO and INDO methods relate these integrals to parameters obtained
from atomic ionization potentials or from iomization potentials and electron
affinities [4, 5]. They might also be obtained from atomic spectral terms [35], or
from the orbital energies of atomic calculations [6].

We choose to calculate core integrals from ionization processes, with the hope
that such a choice will aid in the interpretation of our molecular orbital eigenvalues.

An analysis of the average energy of an atomic configuration yields [12, 35]
I, = E(s'"1p™d™) — E(s'p™d™)
= —Us — (I = DF%s, 5) — m[F°(s, p) — $G*(s, p)]
— 1[F%s, d) — £5G*(s, d)]
I, = E(s'p"~1d") — E(s'p"d")
= — Uy — (m — DIFp, p) — #5Fp, p)]
— I[F°(s, p) — $G*(s, p)] — n[F%(p, d) — 5G*(p, d) — 55G*(p, d)]
I, = E(s')prd"~*) — E(s'p"d")
= —Uy — (n — DIF°d, d) — &(F3(d, d) + F4d, d))]
— I[F°(s, d) — #5G%(s, d)
— m[F(p, d) — #:G(p, d) — G%p, d)]. (13)
The F integrals are calculated exactly for the basis, assuming the effective single
exponential constant given in the previous section. The other Slater—Condon

factors that occur in the theory are taken as semi-empirical parameters: they are
presented in Table 3.

The valence state ionization potentials /; are estimated from atomic spectroscopy
[39]. The complete set of numerical values for the atoms up to and including Zn is
given in Table 4. In this table, two sets of ionization potentials are given for the
transition metals Ca—Cu, since both 4"~ 1s and 4"~ 252 are possible lowest average
energy configurations of these atoms. For most atoms, the choice of the electron
configuration is obvious, but for the transition metals it is not.

We therefore define two sets of processes dependent on the configuration of the
transition metal atom:

Process 1: I, 3d" 45— 34~
3dr-4p — 3471
I, 3d" 45— 3d"%4s
Process 2: I, 3d" ?4s% — 3d" %4s
I, 3d" 24sdp — 3d"%4s
I, 3d" 2452 — 3d" 3452

These ionization processes yield the two sets of values given in Table 4. Clack and
co-workers [13] use Process 2 for all the transition metals in their CNDO and
INDO methods, but an examination of the average observed configuration pro-
motion energies, clearly shows that the d"~2s? configuration is not the lowest
configuration in every case [29], and that this choice effects calculated ground state



"[1v] Joy ‘ednioy,

pue ouuy AQ paje[nojed sanjeA e n)-r) ‘uonejodei)xe d1I109[00SI PUB BIdads JIWOJE WOL) PIIR[IO[Ed e [D-BN p

‘fey] 12 -
‘[p] 32 WOl 4
‘[1y] "joyg woy

(dy “dp)eel PUE (dp ‘Sp)O "P218UTISOP asImIayIo ssofun [op] “Joy W0y (d€ ‘) d pue (dg “d7)ed “(dg ‘€D (AT °SDD »

A. D. Bacon and M. C. Zerner

0056 00¥0T uz o€
S96LS 08658 0£69 00L01 029¢ 09%v 0006 00L0T no 6C
00€£€S 0086L 0szZ¢ 0509 0I0¢ 00L9 00¢8 0ov6l1 IN 8T
0018% 00S¥9 0927 06¢9 OLTE [014%°] 0008 00LTC oD LT
00¥8¢ 00019 0Zs€ 0708 (VS ¢4 099 00SL 00¢9T1 °d 9T
006L¢t 00059 OL6Y 0108 (4741 0119 000L 00681 U Y4
0089¢ 005€9 L6T 00r11 085S (V449 009 00r¥1 10D T
(0101243 0080¢S OTLI 00CII 081¢ (1) 44°] 0009 001s1 A €C
00L6T 00671 00€01 00LET 0TeL 0029 00SS 001¢1 IL (44
009%1 0056¢C 01¢2¢ 00011 0S9¢ 0L8S 000§ 00I1¢I oS 17
0056 00681 8¢T— 08vv 068S 0fLE §TeT 009¢C1 BD (174
2000t 29868 A 6l
- — v 81
L8E8 098¢t 8¢¢el IS PLTT I€ILT 2000¢CS 20001L D LT
675871 T1¥8C L8S0T €LT6T 98P vE TL6ST 0099¢ LO8YT S o1
£0961 ST6ET PCIST 9L1¢ET PEEST 18061 SLLET |84 d 9]
LLI9TT 8EP61 8T8IT SLI6T 90¢5¢ {44! 08¢81 +188¢€ 1S 4!
9.8V LLVL 0Tl 19%¢ 9681 Pré4i cT6Tl £60LT v €1
9L8% LLVL £e8T 187474 0LOE $88¢E 00v9T PL661 SN 4!
9L8V LLVL 90S¢§ 00011 ¥iT6 ot 20009 20SPET BN 11
- — SN 01

a01€69 a8T8911 d 6

SL9CS 86756 (6] 8

001¢¢ CSTCL N L

CLESE SE96S o) 9

SLOST 99¢¢Ey d S

STPIT 9L80¢ °d 14

av601 a¥7610T T €
WPPd PPd s DD P Ded DD 9D @Dt @0 woy o

30

(; - O TY) STO}OB] UOPUOD~-IANR[S € Iqel



INDO Method for Transition Metal Complexes

Table 4. Ionization potentials (eV) for Eq. (13)

Atom -1 -1, -1
H 13.06#
He — —
Li 5.39 3.54
Be 9.32 5.96
B 14.05 8.30
C 19.84 10.93
N 25.69 14.05
O 32.90 17.28
F 39.39 20.86
Na 5.14 3.04 1.52
Mg 7.64 4.52 1.74
Al 11.33 5.98 1.96
Si 15.13 7.67 2.05
P 18.66 10.78 3.50
S 21.11 12.39 4.11
Cl 25.23 15.03 6.
K 4.34 2.73 1.67

dn—zszb,c dn—lsb,c

-1 _Ip -1y =1 —Iz: "Id
Ca 6.03 3.96 — 5.13 2.99 3.44
Sc 6.72 4.20 8.16 5.83 3.43 4.85
Ti 7.28 4.48 9.07 6.34 3.75 5.93
Y 7.73 4.77 9.89 6.71 3.95 6.77
Cr 8.07 5.04 10.66 6.97 4.06 7.43
Mn 8.35 5.27 11.45 7.15 4.10 7.99
Fe 8.76 5.42 12.31 7.27 4.08 8.53
Co 9.94 5.48 13.30 7.38 4,02 9.10
Ni 9.13 5.41 14.46 7.51 3.93 9.79
Cu 9.36 5.18 15.87 7.69 3.84 10.67
Zn 3.54 4.77 17.57 — — —

#For H this corresponds to the ionization potential for an orbital
exponent of 1.2.

® For the associated ionization processes refer to text.

¢ From Ref. [29].

properties. With very little ambiguity we choose as lowest the d"~'s configuration
for Ni and Cu, and the d* ~2s? configuration for Ca, Sc, Ti and Zn. It is also likely
that the 4™~ 1s configuration is appropriate for Fe and Co, and the 4" ~2s2 configura-
tion for V. For Cr and Mn it is not possible to decide the configuration because
there are simply too few states known. The choice of configuration for these two
atoms then were made a posteriori, that is, from the results of actual calculations.
The calculation of ground state geometries seems definitive in this regard, with
both atoms then being assigned the d"~2s2 average configuration as yielding the

best results.
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3.3. The Resonance Integral

The “resonance” integral, or “bonding parameter” B,, is given in Eq. (6). Its
exact evaluation over orthogonalized orbitals is often difficult and requires an
exact specification of the basis [36]. In addition, the value of §,, and its distance
dependence is very sensitive to the details of the basis set orthogonalization. There
exists, as yet, no complete theoretical formulation of the resonance integral,
although several attempts have been made in this direction. At present, the formula-
tion of the resonance integral is the weakest aspect of any zero differential overlap
theory.

We shall set one-centre resonance integrals to zero. This seems strongly suggested
by the work of Seamans and Linderberg [37] and Zerner and Parr [16], and is
conventional in INDO methods.

For the two-centre one-electron integral we use {5, 38]
Buv = (BA + ﬁB)Suv/z
with

c = Ay
s = Ay
¢ = GafoiBoaps + LofpoBoove
v =Dy
pd = 8nfunBonan + ofacBroas
Saa = gfisBasas + &nfinlBpnan + oSicArsas
where S, is a weighted orbital overlap, g, are the geometric factors necessary to

convert from the local diatomic coordinate system to the molecular system, and
£, and f, are universal weighting factors for sigma, pi and delta types of interactions.

@
@

|

2]
el

e
3

(16)

ol

Considering an atom of s, p type basis, Eq. (16) relates the five possible diatomic
interactions, ss, sp5, pus, PsPs and p.p; to the single parameter 54 through the
orbital overlap, and thus the basis actually used. Through the introduction of
f.» and f,, we loosen this specificity, but, of course, at the introduction of two
parameters. As f,, and f,, will not be chosen to be distance dependent, ““non-
nearest neighbour” B,, will be related to nearest neighbour through the distance
dependence of the STO overlap. This is a serious disadvantage but probably
succeeds as the necessary symmetry requirements of 8,, are met by the overlap, and
non-nearest neighbour B,,’s are calculated small. Del Bene and Jaffé [19] have set
f»z = 0.585 to obtain results from CNDO in good accord with molecular electronic
spectra. Ridley and Zerner [18] introduced the addition factor f,, = 1.267 that
gave improved results for n—7* excitations. In addition Ridley and Zerner found
that f,, = 0.68 gave an improved triplet spectrum [20]. Without an extensive
parameter search, we have set f,, = 0.64, an average value, and f,, = 1.267. The
MO eigenvalue spectra obtained with such a choice, and especially the positioning
of pi symmetry MO’s with respect to those of sigma symmetry, compare well with
model ab initio calculations for the systems we have examined.
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When Eq. (11) is extended for use with d symmetry AQO’s it is no longer possible
to use a unique B, for each atom. Two such parameters are used, one for s and p,
and the other for d. Labarre et al. [31, 32], on the basis of population studies on
transition metal complexes have suggested that, for transition metals,

is # B

Our choice of B4; , # B4, introduces a variance to hybridization between the two
shells, but we find this a small price to pay for the greatly improved results. We set
San = fao = 1, and empirically search only the value of 85, We have not, as yet,
examined in detail complexes of two transition metals, and defer comment on

f(;da fc;n andft;m

The B, values selected are given in Table 5.

3.4. Nuclear Electronics Attraction

According to Eq. (6) the nuclear attraction integral (.| R¢ !|x.) appear in S48 and
F,,. For A = BpA# = 0, for reasons given in the previous section. For A # B the
integral (2| R5 *|x®) vanishes under the INDO approximation, Eq. (2). The integrals
(x| R *|x#) that occur in F,, are set equal to y,¢

Yac = (XﬂR(;llXﬁ a7

Table 5. The bonding parameter Bi(eV)?

Atom — B(s) —B(d)
H 9.0

Li 9.0

Be 13.0

B 17.0

C 22.4

N 27.6

O 34.2

F 39.0

Na 7.72

Mg 9.45

Al 11.3

Si (13.0)

P (15.1)

S 16.0

Cl 18.0

Ca -2.0 114
Sc 1.0 15.0
Ti 1.0 18.0
\Y% 1.0 21.0
Cr 1.0 23.0
Fe 1.0 25.0
Co 1.0 28.0
Ni 1.0 29.0 @ H-F from Ref. [5], except C, N, O, Si and P from Ref. [43],
Cu 1.0 30.0 Sc—Cu 3d parameter from Ref, [15]; All others have been

obtained from this work.
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as originally suggested by Pople and co-workers [5]. The ultimate justification of
Eq. (17) is that such a choice provides a good balance between one- and two-
electron terms. A partial theoretical justification comes from the observation that
such a choice compensates for the orthogonalization of the basis that lowers the
value of two-centred (x,|Rc*|y,) from that found over STO’s and includes an
additional lowering representing the core pseudo-potential necessary to compensate
for the inner shell not explicitly considered [45].

3.5. Two-Electron Integrals

The two-electron two-centred non-vanishing integrals v,y are evaluated over
STO’s as are the one-centre F°.

4. The Self-Consistent Field

Equations (6) are generally solved by the Self-Consistent Field (SCF) method that
guesses a set of C¥, then calculates P¥, forms F¥, obtains new C¥*, and repeats this
procedure until the energy and P* have converged to within a specified tolerance.
The P* that is used for the new cycle is generally that obtained from the previous,
although various extrapolation procedures have been devised to hasten convergence
[30]. For transition metal complexes, the SCF procedure described above seldom
succeeds in converging. We have adopted the following procedure that always
seems to automatically lead to convergence within the UHF approximation.

A starting set of MO coefficients are generated by diagonalizing a Hiickel-like
matrix constructed as

F, =—-1,2
Fl?v = Buv

or F is formed directly from P* obtained from a previous calculation. To prevent
large charge buildup on the transition element and reduce diverging oscillation the
3d metal MO’s are searched for and their desired occupancy assured. Unless the
starting P* are quite good, this assignment is seldom in order of increasing MO
eigenvalue: i.e., the aufbau principle most often leads to divergence. MQO’s are
specified by a threshold value of the AO of interest (usually 3d) and the phase
relation between two or more AQs (symmetry). After two or three cycles of such
specification, the occupied orbitals generally stabilize in energy, and, most often,
have the lowest orbital eigenvalues. This assignment of orbital occupancies also,
of course, allows the calculation of excited states.

(18)

The above procedure of electron assignment, by itself, seldom ensures convergence
in these complexes. After an extensive investigation [30], we employ a simple
“system interaction” method.

Although the prescription given below seems complex, it is based on a very simple
idea. Consider a plot of the diagonal elements of the density matrix obtained from
diagonalizing F, against that assumed to calculate F. We wish P (assumed) equal



INDO Method for Transition Metal Complexes 35

to P (obtained), or P(a) = P(0). Any two successive cycles, say the nth and (n + 1)st,
yields two points, (P™a), P(0)) and (P**(a), P"*'(0)) on this plot. The inter-
section of the line connecting these two points, with the 45° line P(a) = P(o0) forms
the basis of our estimated density for the next cycles; i.e. P**2(a) = P"*?(est). For
simplicity of notation, P" refers to the nth cycle, and it is understood that the
procedure is performed on both « and 8 spin densities should the system be open-
shell.

We obtain the estimated density P"(est) of the nth cycle from that obtained by
solving the secular equation P™0) and from P" !(a) = P" (a) = P" '(est)
according to

Pr(est) = fP*~*(a) + (1 — f)P™(o) (19)
with
f = ZfAlA/l (20

where /, is the number of valence basis functions on atom A, / the total number of
valence basis functions considered in the sum and

Sfa = (Piest) — PX0))/(PX~(a) — PX(0))
P} = i )23 Q1)

For an orthogonalized set, P3(o) is the number of electrons on atom A, obtained
by solving the secular equation (4) assuming PZ~*(est) in forming F; i.e.,
F{P7z~(est)} — {P%0)}. Two successive calculations yield the two points
(P2~ 2(est), PL *(0)) and (PZ (est), Pi(0)). Assuming a straight line relation
exists between these two points, and that we seek the point of intersection with
this line and PZ~(est) = P%~1(a) = P¥(o) for each atom A, gives

Pi(est) = [PR(0) — maPL™Y(esD]/(1 — ma)

my = [PR(0) — PR~ (0)]/[PX " (est) — PE~*(est)] 22)

Ja = my/imy — 1) (23)
The following algorithm is adopted:

1. For the first cycle P°(a) comes from a previous calculation, or the diagonaliza-
tion of the Hiickel matrix of Eq. (18).

2. P'(est) comes from Eq. (19) assuming f = 1.

3. fa is obtained for each atom from Eq. (23) whenever m,, the slope, is negative.
For m, positive the intersection of the PZ(est) = P2*1(0o) line with the line
through the two previously obtained points is sensitive to unknown details, and
we set fo = 0 (i.e., PZ(est) = PZ(0)). This is justified as experience shows that
m, < 0 represents all diverging cases met in practice.

4. fis formed from Eq. (20) with only atoms with m, < 0 included in the sum.

5. Steps 3 to 5 are repeated until the desired convergence is obtained. Most often
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f— 0, representing the usual SCF procedure is obtained after close convergence.
When £ does not approach zero the convergence is not stable, and the single
determinant description of the state forced to convergence is often not adequate.

For comparison, we have tried this procedure or similar ones, to estimate each
element of the density matrix separately, each diagonal element separately (with
renormalization of off-diagonal terms), for each atom separately, and finally, the
entire system as described above [30]. The last procedure appears the best, and has
the advantage that Eq. (19) yields a P™(est) such that Trace P = N. We have also
tried simple level shifting procedures, which, although effective, require more time
per cycle.

5. Spin Projection

The eigenfunctions of the unrestricted Hartree-Fock procedure are not necessarily
eigenfunctions of the spin operator S? [46]. Rather

<1P'uhf|S2tLP'uhf> = (8§ = 5'(s' + 1) + g — Tr (P*P?) (24)

with s’ = 5, = (p — ¢)/2, one half the number of « electrons, p, minus the number
of B electrons, g.

In practice the amount of spin ““contamination” in most cases is very small, and
we have adopted a simple spin annihilation to purify the state [47]. The amount
of algebra involved in a simple annihilation is considerably less than that involved
in a complete spin projection.

We define the annihilator A, 4 as
Ay =82 = (@ + DG + 2).
Then
punt = 3 CY,

ST, = s(s + DY, (25)
Ap U = 3 Cls(s + 1) = (5" + 1)(s" + 2)1¥,

= —2(‘9[ + 1)C’s’\Fs' + 2(S’ + 2)C3’+21Fs’+2 + e
This yields
<S2> — <AS’+1‘FUhr[S2lAS’+1\Ifuhf>
w0 = Ay T | Ay E

_ (S — 25" + (s + 25D uns + (s" + D*s" + 228 une
T {SBun — 2087 + DT+ 25D + (57 + DA+ 2)?

(26)
with (S2>.p given in Eq. (24) and (S, and {S® s given in Ref. [47], Eqs. (44)-
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(46), with “A” of that reference defined as s'(s’ + 1) + g. After annihilation, the
densities are approximated by

Pg, = P* — 2{P*P’P* — (P“P*® + P!P%)}/X
P§, = PP — 2{PP*P? — (P*P* + P*PH)|2}| X 27
X=25"+2—¢q+ Tr(P*P*.

The above equations are derived from analysis of Eq. (25) that yield

_ . (Cs+1)2 Cs+2
< >aa - 2< >asa < >uhf + 6{ (Cs) H Cs }

 Dasa = KT Ay o FHH/CERE ] Ay, W95 (28)

and dropping terms of order (C;.,/C;)? and (C;, ,/C;) or smaller. Equations (27)
are similar to those obtained by Amos and Hall for a single-sided annihilation,
{ Dasas €xcept for the factor of two multiplying the second term of PZ, and PZ, [48].
The spin density is then given by

p = P — P, ~ P — P5 — (P*Psp® — PSPiPs)/X. (29)

In general, P% ~ P* and P%, ~ P*® and dropping the higher order terms in
Eq. (27) seems empirically justified. The spin density, however, magnifies these
deficiencies, and Eq. (29) is not valid for calculating excited states when S, is not
equal to its maximum value; i.e., when C;,,/C, ~ 1.

Examining the energy in somewhat greater detail we find
Wasa = VM H [Ag (¥ = Wy — 02X (30)
with Q given by
Q = 2Tr (P*P*P* + PSP°P? — 2P*PYH
+ > {(PP*P< + PSPP’ — 2P<P"),(P" + P%),

ijkm
+ (P* — P*P#%)(P“P? — P%),,. — (P*P*P%), PS,
— (PPPP?); PR + (PoPP)(P* + PP)u}(im | jK). (31)
Equation (28) for the energy correct up to order (C,,1/C;)? is
Wea = 2Woso — Wane/CE + (Cyr 41/Cy)?Ey 41 (32)

Es'+1 = <‘Fs’+1fH|lFs’+1>/<lFs'+1 | lFs'+l>-
Writing Ey ., = Wy + 8 yields

Waa = Wane — Q/X + (Cs'+1/Cs’)28- (33)
We will ignore the last term of Eq. (33) and use
Waa = Wuhf - Q/X (34)

which is computationally very rapid. Since § ~ W,, — W, the relative error
introduced into the correction by such a truncation is (Cy , 1/C,)?, which is usually
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less than 1%. (For the chlorides of the next section, the error is of the order of
5 x 107%a.u.) Again, the exception is met when calculating states in which S, is
not its maximum value for the given number of open shells.

Equation (34) is most rapidly evaluated using Egs. (27). This yields
W, = (Tr (P2 + PSYH + Tr PLF® + Tr PLFH2 + ¥

V= {3 (b = PP - P | O} . (35)

iskm
In general, Y is small.
Making use of Eqs. (25), we derive

Ciir = ({8 unr ~ {SPaa)l2As + 1)

Clro = ((8%a = {SPus(l — C&:1)/4(2s + 3). (36)

In the expressions above, terms of order (C; , 5/C; ; 5)? and higher have been dropped.
Equations (35) are used to check the validity of Eqgs. (34), (29) and (27).

6. Some Results

The present model and associated computer programs have been in use for over
two years [30] by several groups. The results obtained are good when compared to
ab initio calculations or to experiment. Calculations on the spectra of transition
metal complexes [49, 50]! seem to be in excellent accord with experiment. We wish
in this paper only to present some results on the chlorides of Fe, Cu and Co, and
to compare these results to those obtained by other types of calculations, and to
experiment.

6.1. Iron Chloride FeCl;?

FeCl; ! is a tetrahedral complex with a bond length of 2.1955 A [51]. As is usual
with 7, complexes the molecule is of high spin, in this case with five unpaired
electrons.

Calculations were performed at the experimental bond length and are reported in
Table 6, along with the unrestricted X, SW results of Noodleman [52]. The orbital
energies for the MQ’s with both the « and 8 components occupied agree fairly
well with the X, results, but the energies of the « 3e and 10, MO’s which have no
occupied B counterpart are 0.54 and 0.60 a.u., respectively, below the X, results.
These orbitals are the principal 3d metal MO’s (the 7¢, MO is taken as a ligand 3s
orbital despite the high metal 3d character). In our results the 3d MO’s are not the
HOMO’s but lie well below the ligand 3p MO’s. This feature is characteristic of
many Hartree-Fock calculations (for example, the following section on CuCl; ?).

1 Ref. [50]is a comprehensive study of the excited states of CuCl, using the methods presented
in this paper along with ab initio AE and CI calculations, and scattered wave Xa calculations.



INDO Method for Transition Metal Complexes 39

Table 6. FeCl}Y(Ty) results (a.u.)

Noodleman [96] This work’
X, S.W. INDO/1
& Nature &
a B a B average
10£,(34)* —0.193 Fe 3d —0.681(50)* [+0.126]°(69)> —0.282(58)*
3e(3d)> —-0.218 Fe 3d —0.747(98) [+0.226]1*(96)> —0.260(97)=
2t —0.242 —0.234 Cl3p —0.303 ~0.282 —0.292
91, -0.279 —0.265 Cl3p-+Fe3dd —0275 —0.316 —0.295
2e —-0.302 —-0.270 Ci3p+Fe3dd —0.307 -0.311 —0.309
8¢y —0.331 —0.300 Cl3p+Feldd —0.351 —0.336 —-0.343
8a; —0.341 —~0.328 Cl3p+Fe3d —0.362 —0.306 —0.334
7t, -0.710 —0.700 Cl3s —0.827(49)* —0.739 —0.783
Ta, —-0.721 —-0.722 Cl3s —0.804 —0.776 ~0.790
Aromic charges:
Cl —0.406 (—0.664)°
Fe +0.624 (+1.654)¢
Metal orbital populations:
3d 5.957 (5.951)¢
4s 0.457 (0.181)®
4p 0.963 (0.214)¢

@ Percentage metal 3d character.
® The B8 3e and 107, MO’s are unoccupied.
© Mulliken population analysis.

The X, SW one electron energies are obtained using Slater’s transition state
theory [53], in which half an electron is withdrawn from each orbital in turn. Thus
each value is obtained from a separate calculation, and corresponds directly to an
ionization potential (IP); that is, to the energy required to remove an electron
from “a given orbital” and includes in an average way the reorganization of the
system upon ionization. This approach seems to yield the classical MO picture
with the metal 3d MO’s as HOMO’s. This classical picture of transition metal
orbitals has evolved as one generally thinks in terms of orbitals which obey
Koopmans’ approximation when assigning the negative of orbital energies to
ionization processes.

As we have used the UHF procedure, the calculated eigenvalues are “orbital
energies” in the sense that they obey Koopmans® approximation; that is, in the
absence of molecular relaxation (the reorganization of the other 2n — 1 (or 2n)
electrons) upon the loss (or gain) of an electron they represent ionization potentials
(or electron affinities). However, ab initio calculations demonstrate that the relaxa-
tion for the loss of a ““3d electron” is 0.3-0.5 a.u., which should be added to the
Koopmans potential to give an estimate of the IP. Assuming 0.4 a.u. is a typical
value of the relaxation for the removal of an electron from a MO of principally
metal 3d character places our IP estimates in reasonable accord with the X, one-
electron energies. Such a blanket estimate of the relaxation, however, must be
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viewed with caution, and the direct estimate of more accurate IP’s from a single
calculation will be difficult.

One method which may prove useful in the estimation of some ionization energies
involves averaging the energies of an appropriate pair of « and 8 spin orbitals. When
only the o spin orbital is occupied, as is the case for the metal 34 orbital(s), the
averaging corresponds to an average of an ionization potential and an electron
affinity. We can, however, view this average in a different fashion. Consider a
doublet. The removal of an unpaired « electron corresponds to an ionization
process. If we replace this electron in the corresponding S8 orbital we should
recover the other degenerate component of the doublet. The energy to do this,
—e&f (occupied) + &f (unoccupied), should be zero, but it will not because of
relaxation. We define 2R as the amount of relaxation necessary to give a net change
of energy equal to zero. That is,

MCTy0) > M (1) — M(T'_,;5) — e¥(occ) + & (unocc) + 2R = 0
R = 3(sf(occ) — &f(unocc))

where 2+ 1I", labels the states of molecule M. If we then assume that the relaxation
energy for the loss of an electron is equal to that for the gain of an electron, then

IP; = —&f(occ) + R = —&(ef(occ) + ef(unocc)) = e(ave).

This is a crude approximation, and it becomes even more so when the molecule is
not a doublet as the final and starting molecular species are then of different spin
multiplicities. This approach does, however, restore the classical picture with the
metal 3d MO as HOMO when the corresponding 8 metal orbitals are unoccupied.
In this particular case, this approach leads to a reversal of the metal e and 7,
orbitals. While this averaging procedure is unlikely to yield accurate estimates of
IP’s when relaxation is important, it does allow for a better estimate than do the
individual eigenvalues.

In cases where accuracy is required, it will be necessary to carry out separate calcula-
tions for each electronic configuration corresponding to an ionization process in
order to determine the total energy, and thus the change in total energy. This
process is found to work well provided the calculations on M and M * are of the
same quality. There is some question of the accuracy of such a subtraction of such
large numbers when both calculations are not of the restricted HF type.

We have carried out calculations on FeCl, using a slightly distorted molecule of
Dy, symmetry to avoid symmetry breaking. For the high spin FeCl; ! molecule
we calculate that the lowest IP results from the removal of an « electron from a
b, MO that is principally ligand in nature, Table 7. The AEgqr value is 0.269 a.u.
which corresponds well to the Koopmans’ potential of —ef,(occ) = 0.275 a.u., or
—ep(ave) = 0.299 a.u. for FeCl;* or —ef (unocc) = 0.266 a.u. for FeCly, indicat-
ing that there is little relaxation for this ionization process. We also attempted to
remove the unpaired « electron from the metal b, MO but we were not able to keep
this state from mixing with the previously calculated state.
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In order to examine further the order of the energies for the ionization processes
by(ligand) < by(metal), we have also calculated the energies of a series of low spin
configurations of FeCl,. The calculated AEgq, values are given in Table 7 along
with the results of the low spin FeCl; ! molecule. The removal of an electron from
the b, MO of ligand character appears to require less energy than the removal of
the unpaired 34 electron, Fig. 2. The relaxation involved in the removal of the
“3d” electron is 0.345a.u., a value in good accord with the estimates from
ab initio results, and in reasonable accord with the value inferred from e(ave).

When the energies of high and low spin FeCl,; * systems in the distorted tetrahedral
geometry, Fig. 1, are compared, the high spin configuration is more stable by
0.081 a.u. or 2.20 eV. For the tetrahedral FeCl; ! system we calculate an equilibrium
bond length of 2.242 A which compares well with the experimental length of
2.1955 A. The expectation value of S? before annihilation of the next highest spin
component of the high spin complex is 8.753297, after, 8.750002. The annihilation
lowers the SCF energy by 0.0002 a.u.

6.2. Copper Chloride CuCl;*

The calculations were carried out on the square planar geometry (D,,) using a
Cu-Cl bond length of 2.26 A, which is an average of the reported experimental
values for the square planar configuration, 2.30 A [55], and the tetrahedral one,
2.22 A [56]. Comparison is made with the restricted ab initio results of Veillard et al.
{54] and the “revised INDO” results of van der Lugt [14]. This was one of the first

Table 7. Low spin FeCly *(Dy,) results (a.u.)

&

@ B average AEgcr(state)
4ba(xy)® —0.625(66)* [+0.199]1®(78)= -0.213 0.280 (*41)
3b, —0.256 —-0.317 —-0.287 0.269 (*41)
0.304 (®A41)

3b, —0.292 —0.294 ~0.293 0.31 + 0.01(*A4,)
0.30 + 0.01(A42)

4e —0.297 —0.296 —0.297

2b, —0.301 —0.303 —0.302

4a, —0.302 —0.301 —0.302

3e —0.332 —0.325 —0.329

2b, —0.332 -0.344 —0.338

3a, —0.347 —0.344 —0.346

2e —0.362 —0.351 —0.357

1b:(x2 — y¥)® —0.632(97)* —0.618(96)* ~0.625

2a;(z%)* —0.662(97)= —0.636(97)2 —0.649

e —-0.756 —0.754 —0.755

16 —-0.779 —0.743 —0.761

la, —-0.799 —0.798 —-0.799

2 Percentage metal 3d character.
> The B 4b; MO is unoccupied.
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Fig. 2. Molecular orbital diagram for FeCl, (Dss). 4 indicates the half filled Fe *“34d> MO’s.
All other orbitals of the figure are occupied

systems for which a Hartree-Fock calculation yielded the metal 34 orbitals firmly
below the ligand 3p [57]. An earlier Extended Hiickel calculation [58] on this ion
had put the metal 34 orbitals in the typical ligand field position as the HOMO’s.

The results of the three methods are reported in Table 8. Two ab initio calculations
are presented: the enlarged Basis Il yielding a total energy of —3472.284 a.u. and
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Basis II yielding —3470.577 a.u. A comparison of orbital eigenvalues, however,
indicates that they have stabilized with respect to improvements of the basis set.
As the ab initio calculations are restricted, Koopmans’ theorem applies only to the
open shell eigenvalues. The closed shell eigenvalues must be corrected by exchange
terms before the orbitals correspond to “Koopmans’ orbitals”. These adjusted
values have been estimated for Basis II and are reported in parentheses in Table 8.
For the MO’s of ligand character this correction is quite small, and for the MO’s
of metal character the correction is 0.06 a.u. or less. As the unrestricted formalism
directly yields Koopmans’ orbitals, our eigenvalues should be compared with the
RHF open-shell eigenvalues and the closed-shell eigenvalues corrected for exchange.
Since this exchange correction appears small, a direct comparison is not invalid.
The eigenvalues obtained from the ““revised INDO” model of van der Lugt need
all be corrected for this comparison, but only the correction for the open-shell 65,,
orbital is sizeable, and this has been made in the table.

The results of all three calculations are reasonably similar. There are four low-lying
orbitals, 7a.,, 7e,, and 4b;,, that are principally Cl 3s. Both the approximate
calculations predict the splitting of these orbitals to be too large at about 0.14 a.u.
compared to the ab initio result of 0.04 a.u. This is a common fault in most of our
calculations and is caused by too large an interaction between the metal 45 and the
ligand AO’s. In addition, our results suggest that these Cl 3s orbitals are inter-
spersed with the occupied metal orbitals, Fig. 3, whereas the other two suggest a
separation of about 0.1 a.u. This has been caused by a mixing of 34 into both the
4b,, and 6b,, orbitals in the UHF calculation, Table 8. In the ab initio results the
metal orbitals are split by about 0.08 a.u. with the 6b,,(d,2 . ,2) orbital lying highest
in energy only after the exchange correction is made to the closed-shell orbital
energies. Our calculated splitting of the metal orbitals is about 0.12 a.u. with the
6b;, orbital lying lowest in energy. This also seems to be a feature of the UHF
calculation rather than the model [50]. The splitting of 0.23 a.u. as calculated by
the “revised INDO” model is probably too large, although such a conclusion is
not certain until a dependent observable is calculated.

In all calculations four doubly occupied orbitals, or their counterparts in the UHF
calculation, can be classified as nearly pure metal orbitals. The singly occupied
6b,, MO is nearly pure metal in the ab initio results, 73% in our results, and only
49% in the “revised INDO™ results, The ab initio and the INDO/1 results then
show a gap of about 0.25 a.u. before the onset of 12 MQ’s that are principally
Cl 3p. The “‘revised INDO” results show a smaller gap of about 0.07 a.u. before
the onset of these MO’s. This discrepancy arises from the position of the 6b,,
orbital of that calculation.

In comparing the results of a Mulliken population analysis it can be seen, Table 8,
that our atomic charges are in good agreement with those obtained from the
ab initio calculation using Basis ITI [59]. The balance of 45 and 4p, however, is not
the same. The calculation of a negative charge for the Cu atom in the “revised
INDO™ results is not in agreement with our results, and indicates less metal back-
bonding to the ligands. A direct comparison between the “revised INDO” results
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and the ab initio results cannot be made, as the former refers to the charge calculated
directly from the Fock-Dirac density over an orthogonalized basis [59].2

In all these calculations there are two notable features in the ordering of the orbitals,
all of which should obey (neglecting relaxation), or nearly obey, Koopmans’
approximation. The first of these is the fact that the ligand 3p orbitals lie above the
metal 3d orbitals; the second, that there is a singly occupied 65;, MO below many
of the doubly occupied levels. Neither result can be considered as ““conventional ”.
The first apparent contradiction in light of Koopmans’ approximation has been
discussed in terms of the relaxation energy. Even so, as the net charge on each of the
Cl atoms is calculated to be nearly — 1 from either the ab initio or INDO/1 results,
the loss of an electron from orbitals localized on the ligands is an attractive alterna-
tive to the loss of an electron from an already positively charged Cu atom. The
second feature of a singly occupied orbital lying up to 0.4 a.u. below other doubly
occupied levels can be understood from an examination of two electron terms. If
the energy involved in the removal of an electron from the HOMO were the same
as that required to pair two electrons in the 6b;, MO, then the net gain in energy
would be the eigenvalue difference (this neglects changes in the exchange energy,
but this should be small), making the process favoured. However, the Coulomb
repulsion between two electrons in the HOMO, which is a very delocalized orbital,
is unlikely to be greater than 0.2-0.3 a.u., while the Coulomb repulsion between two
electrons in the 6b;, MO, which is nearly pure metal and thus very localized, is
about 1.0 a.u. Thus the process is not favoured and the 6b;, MO remains singly
occupied in spite of the low eigenvalue.

The fact that the 6b;, MO has the lowest energy of the “metal 34" orbitals in our
results and yet is the singly occupied orbital rather than, say, the 8a;,(d.2) with a
higher energy suggests that the easiest metal orbital to remove an electron from is
the 6b,,; that is, that the relaxation for the removal of the electron from the 6b,,
orbital is somewhat larger than the relaxation from the other metal-like MQ’s.
Thus, although our eigenvalue ordering is

dez 2 < dyy < dezy dyp < d2

the very presence of the hole in the d,2_,2 MO suggests that the electrons are
removed in order of ease

Ayy < oy Ay, < dpz < dy2_ 2

This is in agreement with the order suggested by Figgis [60] to account for the
magnetic and spectral properties of square planar complexes, and with the corrected
eigenvalue ordering of the restricted calculations of Veillard et al. and the ordering
obtained by van der Lugt.

2 For this comparison we assume that our basis is a Lowdin symmetrical orthogonalized one,

and make the transformation back to Slater type orbitals. The justification for such an assump-
tion, however, is weak, and we view the results of the Mulliken population analysis with some
reservations; see, e.g. Ref. {17].
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Table 9. Ionization potentials of CuCl;y? from AFEsce
calculations (a.u.)

Electron

removed State AEscr —egoce)  —glave)
b1 4(ligand) 1A, —0.014 —-0.022 0.020
b14(ligand) 84, 0.048 0.061 0.020
as,(ligand) 18,, 0.032 0.029 0.027
as,(ligand) 3By, 0.025 0.026 0.027

The AEgcr values for the removal of an electron from the 55,, and 2a,, MO’s which
are of ligand character are given in Table 9. These values compare quite well with
the —e; (occ) values indicating that the relaxation for the removal of an electron
from an orbital of ligand character is again small. The AEg¢, value of 0.039 a.u.
for the removal of an electron from the 2a,, ligand MO is in good accord with the
ab initio result of 0.056 a.u. We were unable to calculate the energy of the A4,
state corresponding to the removal of the unpaired electron from the 65,, MO. The
ab initio calculation did not have this difficulty for this particular b, MO, and
Veillard et al. report an IP of 0.110 a.u.

In both the ab initio and INDOJ1 results the lowest IP is due to the loss of an
electron from a molecular orbital which is principally ligand in nature, Fig. 3.
Upon the loss of an electron from a “d MO, sizeable relaxation is found and IP’s
of about 0.1 a.u. are estimated. Thus, even though the difference between the ligand
and metal orbital eigenvalues is large, the estimated differences of IP’s are quite
small making it difficult to order the ionization processes from these calculations.
An interesting feature of the ab initio A Eqqr calculations, in contrast to the exchange
corrected MO eigenvalue ordering, is that the loss of an electron from the 2b,,(d..,)
orbital appears to require less energy than the removal of the unpaired electron
from the 6b,, orbital. This implies a reversal of our usual concepts of the metal
orbital ordering in a D, ligand field, but the difference is sufficiently small
(0.007 a.u.) that it may well be a result of the mechanics of the calculation, rather
than a real result.

For the equilibrium bond length of the D,, system we calculate a value of 2.255 A
which compares very well with the experimental values of 2.30 A given for
(NH,),CuCl, [55] and 2.265 A given for [(C¢Hs;)CH,CH,CH;],CuCl, [61]. For
the distorted tetrahedral complex we calculate a bond length of 2.260 A, to be
compared with values ranging from 2.22 A [56] to 2.26 A [62]. An estimate for
the isolated anion of 2.283 A has been made from an analysis of vibrational
structure [63].

We find that the D,, molecule is lower in energy than the Dy, system by 0.55 eV.
We calculate that the observed distortion from T; symmetry found in Cs,CuCl,
with an angle of 130° [62] is stable relative to the T, geometry by 0.06 eV.
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6.3. Cobalt Chioride CoCl;?

The calculation was carried out on the *4, ground state of CoCl;? using 7,
symmetry and a Co-Cl bond length of 2.252 A [64]. The results are compared in
Table 10 with the restricted ab initio results of Hiller, Kenduck, Mabbs and
Garner [64]. As in the CuCl; 2 results, we find that the unpaired 7, MO’s are not
the HOMO’s and that they lie at much lower energy: we surmise that the Coulomb
repulsion energy is sufficiently large as to maintain these “holes” below doubly
occupied ligand MO’s. Figure 4 shows that the position of these metal 10z, MO’s
causes the 97,6 MO’s to be pushed up relative to the 8 MO’s, and the 77,0 MO’s
to be pushed down. The end result of this is that the 97, average cigenvalue lies
above the 3e and 2f; average eigenvalues. We also calculate somewhat less 34
character in the 107, MO’s and correspondingly more 4p character.

By again using a relaxation value of about 0.4 a.u. (or 0.44 a.u. as suggested in
Table 10 comparing the « eigenvalue with the average eigenvalue) for the removal
of a 3d electron and assuming the relaxation for the removal of an electron from
a ligand orbital is small, the more classical ordering of the metal, ligand IP’s is
restored.

Comparison of the Mulliken population analysis shows that very good agreement
is obtained for the atomic charges, but that for the Co atom the 34 and 4p balance

Table 10. CoCl; 2 results (a.u.)

This work,

Ab initio [99] INDO/1

(restricted) &

&; a B average
102,(3d)* 0.1019(96) —0.420(65) [+0.538]°(68) +0.060(67)
2t —0.0862 —0.064 —0.062 —0.063
3e -0.0984 —0.068 —0.064 —0.066
9ty —0.1123 —0.040 —-0.068 —0.054
815 —0.1409 -0.106 —0.109 —0.108
8a, —0.1809 —0.118 —0.111 —-0.115
2e(3d)? -0.3505(97) —0.419(98) —0.351(98) —0.385(98)
Tty —0.6837 —0.548 —0.508 —0.528
Ta; —0.6959 —0.549 ~0.544 —0.546
Atomic charges:

Cl [—0.84]° —0.606 [—0.832]°

Co [+1.36]° +0.422 [+1.330]°
Metal orbital populations:

3d [6.97]¢ 7.147 [7.138]¢

4s [0.29]¢ 0.444 [0.201]¢

4p [0.51]¢ 0.984 [0.333]¢

a Percentage Co 3d character.
® 10¢, B MO is unoccupied.
¢ Mulliken population analysis.
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is not in as good accord [59]. However, the ab initio calculation has a rather poor
representation of the 4s and 4p AQO’s using only a single Gaussian function for
each.

The eigenvalue of S? for this complex before spin annihilation is 3.750994, after,
3.750000. The annihilation has lowered the total energy by 0.0002 a.u.
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Appendix

Below are listed all integrals that are included by the INDO model outlined in this
work, and that are required to preserve rotational invariance. The abbreviation
used is

O0=s 1=p. 2=p, 3=p,
4=dz S=de.p 6=d, T=d. 8=d,

There are other non-vanishing integrals under the INDO model, such as (04/00),
etc., but these integrals are small, and their exclusion does not introduce rotational
variance. They are all of Slater’s “ R” type [65].

An example of the importance of the mixed INDO terms that are kept can be seen
in ferrocene [49]. The lowest lying singlet excitation is calculated as *E{(d,2 — d,)
at 22,000 cm . The four states resulting from d,2_.2, d,, — d,(=d,) are cal-
culated nearly degenerate at 28,000 cm ™2, before configuration interaction (CI).
These states then interact through (57/68), and after CI the resulting states, of
'E; and *E7 symmetry, are calculated split by 8000 cm~? in reasonably good accord
with the experimental value of 7000 cm ™. Averaging over classes of integrals to
avoid these mixed terms would give a very different assignment of the singlet
absorption spectrum of ferrocene.

(00/00) = Fy(ss)

(01/01) = (02/02) = (03/03) = G,(sp)

(04/04) = (05/05) = (06/06) = (07/07) = (08/08) = Go(sd)

(11/00) = (22/00) = (33/00) = Fy(sp)

(11/11) = (22/22) = (33/33) = Fy(pp) + 4F:(pp)

(12/12) = (13/13) = (23/23) = 3F,(pp)

(14/14) = (24/24) = G,(pd) + 18G4(pd)

(14/15) = (16/24) = (26/14) = —V'3G,(pd) — 3V 3G4(pd)

(15/15) = (16/16) = (17/17) = (25/25) = (26/26) = (28/28) = (37/37)

(38/38) = 3G.(pd) + 24G4(pd)

(16/25) = —3G,(pd) + 21G4(pd)

(17/34) = (28/34) = 2V/3Gy(pd) — 9V'3G,(pd)

(17/35) = (18/18) = (18/27) = (18/36) = (27/27) = (27/36) = (35/35)
= (36/36) = 15G4(pd)

(22/11) = (33/11) = (33/22) = Fy(pp) — 2Fx(pp)

(25/24) = V3G, (pd) + 3V3G4(pd)

(26/15) = 3Gi(pd) — 21G4(pd)

(28/17) = (37/15) = (37/26) = (38/16) = 3G,(pd) — 6G4(pd)

(28/35) = — 15G4(pd)

(34/34) = 4G,(pd) + 27G4(pd)

(37/14) = (38/24) = —V'3G.(pd) + 12V3G4(pd)

(38/25) = —3G,(pd) + 6G4(pd)

(44/00) = (55/00) = (66/00) = (88/00) = Fy(sd)

(44/11) = (44/22) = Fy(pd) — 2F,(pd)

I
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(44/33) = Fo(pd) + 4Fy(pd)
(44/44) = (55/55) = (66/66) = (77]77) = (88/88)
= Fy(dd) + 4F,(dd) + 36F,(dd)
(45/11) = (46/12) = —2V'3F,(pd)
(45/22) = 2V 3Fy(pd)
(45/45) = (46/46) = 4Fy(dd) + 15F(dd)
(47/13) = (48/23) = V/3Fy(pd)
(47/47) = (48/48) = Fy(dd) + 30F(dd)
(55/11) = (55/22) = (66/11) = (66/22) = (77/11) = (77/33) = (88/22)
= (88/33) = Fyo(pd) + 2Fy(pd)
(55/33) = (66/33) = (77/22) = (88/11) = F,(pd) — 4Fy(pd)
(55/44) = (66/44) = Fo(dd) — 4Fy(dd) + 6F,(dd)
(56/56) = 35F,(dd)
(57/13) = (67/23) = (68/13) = (78/12) = 3Fy(pd)
(57/47) = (67/48) = (68/47) = V'3F,(dd) — 5V/3F,(dd)
(57/57) = (58/58) = (67/67) = (68/68) = (78/78) = 3Fy(dd) + 20F(dd)
(58/23) = —3Fy(pd)
(58/48) = —V/3Fy(dd) + 5V3F(dd)
(58/67) = —3Fy(dd) + 15F,(dd)
(66/55) = Fo(dd) + 4F,(dd) — 34F,(dd)
(68/57) = 3F,(dd) — 15F,(dd)
(77/44) = (88/44) = Fy(dd) + 2F,(dd) — 24F (dd)
(77/45) = (78/46) = —2V/3F,(dd) + 10V/3F,(dd)
(77/55) = (77/66) = (88/55) = (88/66) = (88/77)
= Fy(dd) — 2F,(dd) — 4F,(dd)
(88/45) = 2V 3Fy(dd) — 10V/3F(dd)

In the above,

F, = F°

Gi(sp) = G'(sp)/3
Go(sd) = G¥(sd)/5
Gy(pd) = G*(pd)[245
Gi(pd) = G*(pd)/15
Fy(pp) = F?(pp)|25
Fy(pd) = F*(pd)(35
Fo(dd) = F(dd){49
F(dd) = F*(dd)/441

and the superscripted integrals are as defined in Ref. [65].
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