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A complete Intermediate Neglect of Differential Overlap model suitable for the 
examination of transition metal complexes is described. The model is charac- 
terized by the inclusion of all the one-center exchange terms necessary for 
rotational invariance and accurate spectroscopic predictions, as well as an 
accurate description of integrals involving 3d atomic orbitals. The model is 
within the unrestricted Hartree-Fock formalism, and a method for spin 
purification is described. Problems with convergence of the self-consistent field 
are discussed, and a method that has been found successful in aiding the 
convergence is outlined. 

The model has been applied to many transition metal systems. In this article 
the results of calculations on the chlorides of Fe, Co and Cu are described. The 
results of these calculations are compared with experiment, and with the results 
of calculations by other methods. 
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1. Introduction 

It is the purpose of this work to examine an approximate molecular orbital method 
capable of yielding useful information on the electronic structure of transition metal 
complexes, as well as yielding information and experience on the application of the 
molecular orbital approach itself, to such complexes. This report describes an 
Intermediate Neglect of Differential Overlap (INDO) model that is reasonably 
successful in describing the ground state properties of a large variety of transition 
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metal complexes. A subsequent paper will deal with the calculation of excited 
states. 

Transition metal compounds are very often characterized by a high symmetry, 
suggesting that soundly developed and rationally parametrized molecular models 
should be as successful, if not more so, in describing the results ofab initio molecular 
orbital calculations as they are in describing molecules of hydrogen and the first 
row. Surely this high symmetry is behind the success of the crystal field and ligand 
field descriptions of such complexes [1]. The Iterative Extended Htickel theories 
have also been quite successful in yielding information on transition metal com- 
plexes [2, 3] ; their success is due to a proper accounting for the molecular topology, 
and a high degree of parametrization on atomic data. 

The Intermediate Neglect of Differential Overlap model is examined here [4]. This 
is one of the simplest theories that attempts to mimic in a more or less correct 
fashion the proper Born-Oppenheimer Hamiltonian. A simpler theory in the same 
spirit would be the Complete Neglect of Differential Overlap model (CNDO) [5], 
which differs from INDO by omitting the one-centre two-electron exchange terms. 
As we anticipate that differences between the energies of different spin states will 
be of interest, such a simplification will not be satisfactory. It is exactly these one- 
centre exchange terms that distinguish the various atomic term energies within an 
electronic configuration. 

There are several rather unique problems met in studying the molecular orbital 
theory of transition metal complexes that are not met in dealing with molecules 
containing hydrogen and the first row atoms. The first of these is that the number 
of one-centre exchange integrals increases so greatly as to change the traditional 
zero-differential overlap method of formation of the Fock matrix in a direct 
fashion to methods in which the many integrals are calculated and ordered but 
once. A second difference is that metal d orbitals cannot be described accurately 
enough for most purposes by a single Slater type orbital and subsequent parameter- 
ization. Such an approach is " t radi t ional"  for other orbitals, or for d orbitals in 
second row atoms. Perhaps the most troublesome problem is that self-consistent 
field calculations on transition metal complexes seldom converge if the calculated 
molecular orbitals are used for the subsequent cycle, and if they do, often converge 
to an excited state. 

Several other investigations have been made of Zero Differential Overlap (ZDO) 
models, and we will have recourse to discuss some of these methods later. This 
model will differ from all of them in the treatment of the one-centre metal exchange 
integrals, the structure of the d symmetry atomic orbitals, and, of course, the 
parameterization. Models that have proven useful and are not of the ZDO type 
are the Extended Htickel Methods of Zerner and Gouterman [2] and of Hoffmann 
[3], and the method of Hall and Fenske [6] which is based upon the Mulliken 
approximation for integrals. 

After some rather extensive use of the INDO model, it is, perhaps, honest to note 
that the high symmetry and weak interactions that characterize transition metal 
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compounds and that are the reasons for the success of simpler models, may well 
make methods that purport to more accuracy les~ useful unless refined. Models 
such as crystal field theory and the Extended Htickel theory might be said to lead 
to "physical orbitals" in which eigenvalues correspond more or less to ionization 
potentials or electron affinities, and orbital energy gaps correspond to spectral 
transitions, either directly, or perhaps, after simple correction [7]. Koopmans'  
approximation, however, which relates the negative of the orbital eigenvalue to an 
ionization potential, appears very unreliable in estimating ionization processes 
from either ab initio molecular orbital calculations or those obtained using the 
INDO model. Electrons removed from orbitals centred on metal atoms are often 
accompanied by 10-20 eV of relaxation energy, while those removed from ligand 
valence orbitals are accompanied by a relaxation of typically less than l eV. 
Because of this relaxation, the simple "intuit ive" crystal field picture with metal 
d orbitals as the highest occupied, is often not obtained. Singly occupied metal d 
" M O ' s "  are often buried below doubly occupied ligand MO's,  even though the 
former are most easily ionized. 

Worse than the loss of these simple "physical orbitals" is the realization that the 
role of configuration interaction (electron correlation) is very important when the 
interactions between atoms are weak. Typically a transition metal is weakly 
coupled to its ligands; very often a very simple Configuration Interaction (CI) 
completely changes the INDO description of the ground state. Without a great 
deal of care, self-consistent field molecular orbital calculations will converge to 
any one of several near lying states--not necessarily that of lowest energy, or to a 
state of cracked symmetry, again indicating an important role for CI. It may well 
prove that self-consistent field molecular orbital models, by themselves, will be 
of  only limited utility in describing the electronic structure of transition metal 
complexes. 

2. Description of the Method 

We seek solutions of the molecular electronic Hamiltonian 

H r  Er 

where ~b is a function of all n valence electrons of the system. r will be approximated 
as a single Slater determinant 

r = ]r162 r 

where {r are the molecular orbitals (MO's). For a closed shell system this will 
lead to the usual Restricted Hartree-Fock procedure (RHF) [8]; for an open shell 
system such a description will lead to the Unrestricted Hartree-Fock formalism 
(UHF) [9]. The methods developed would be equally as appropriate for RHF 
calculations on open shell systems [10], but this has, as yet, not been examined. 

The molecular orbital r is expanded as a linear combination of atomic orbitals 
as is conventional in the Roothaan-Hall  recipe [8, 11] 
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where {x~} are the basis of atomic orbitals. Within the INDO approximation such 
orbitals are envisioned to be strongly orthogonal and are characterized in integrals 
by 

x~(1)X~(1 ) dr(l) = X~a(1)X#(1) dr(1)SaB (2) 

and 

(X~X# 1 X~X~) ~ f dr(l)dr(2)X~(1)Xa(1)r~lx.(2)Xo(2) 

= f(x~x#lxr A = B 
L(x~x~ I ~ ~ (3) X:,X~,)8,~,~Sy,~ A ~ B 

where x~ "belongs" to atom A, X~ to atom B, Equation (2) is the definition of the 
zero differential diatomic overlap approximation, Eq. (3) sets to zero two-centre 
two-electron terms involving one-centre differential overlap-the terms that 
distinguish the Neglect of Differential Diatomic Overlap model (NDDO) from 
INDO. It is hard to envision a basis set of atomic orbitals that has the property of 
Eq, (3); rather this approximation is usually justified by the relatively small size 
o f  A B A A B B Xy X~), and the introduction of semi-empirical parameters (xox~ I (xox~ I x",x~) to 
that compensate for errors introduced by assuming Eq. (3). 

Application of the variational principle yields the two matrix equations (4), (9). 

F K C  ~ = ACKe K (4) 

r ~  = T.~ - ~ Z~(x.IRg*[XJ + ~ [P,a(x.x~ l x,xO - Pfa(xvx~, 1 x~xa)] 

T.~ - (xA-}v21x0 + v.~ (5) 
where the superscript K refers to a or fl electron spin. F is the Fock or energy 
matrix, /X.~ = (X. ]X~), the orbital overlap and P = W +  pc ,  the first order 
Fock-Dirac density matrix defined over the MO coefficients C K as 

MO 
p K : ~ jV~C.':C'K 

a 

with N~ = 0 or l, the occupancy of r 

Under the INDO model, Eqs. (5) become 

F.K. = Uu. - ~ ,  ZB(xvIR~l lX . )  + ~ ,  PoWuo -- Ps  + AGu. t* ~ A 
B e A  

F ~  = fl.~ - Pu~yuvK + AG,~ t ~ r v 

U.,, -= (X . i -~ -V ~' -- Z,, /R. Ix . )  + V.. (6) 

A 1 2 B A R - Z  Zr (x. [ - ~ v  Ix0 - ~ .  ~ Zc(x.i o Ix~) 
C 

P u v y ~ v -  P~aYuaSuv 3AU' AG.~ = [Poa(~,]=a) - Pk(t,=l,,a)] + '~ 
r 

In Eq. (6) y . .  = (XuX, ] XoXo), where xu is the s symmetry equivalent of X.: for a 
one-centre integral y . .  = F~ the Slater-Condon integral [12]. The "A"  above 



INDO Method for Transition Metal Complexes 25 

the summation indicates the sum is confined to only X~ on atom "A".  With this 
definition, and AG~ = 0, the above are the Complete Neglect of Zero Differential 
(CNDO) Eqs. (5). For atoms with basis sets of s and p symmetry, the AG,~ are 
reasonably simple [4]. The inclusion of d symmetry orbitals, however, complicate 
these terms considerably. Rather than treat these terms in a general fashion in a 
double summation over integrals for each diagonal F,~ for each cycle as is con- 
ventional for ZDO theories, it now becomes advantageous, as it does in ab initio 
calculations, to order and store the two electron integrals once. Each integral is 
then positioned in all places that it occurs in the two-electron G matrix as it is read. 
A summary of these INDO integrals appears in the Appendix. For an s and p 
basis these integrals are complete: for an s, p and d basis only those integrals 
corresponding to Slater-Condon G K or F/c are kept. 

Several investigators have suggested that " I N D O "  be interpreted as a theory that 
only keeps corrections corresponding to exchange (X,Xv [X,Xv) and Coulomb 
(X,X, [ X~X~) type integrals. For an atom with an s, p basis, this is complete, but for 
atoms with d atomic orbitats the method is then rotationally variant. This variance 
is empirically small [13, 14], and can be removed by suitably averaging over classes 
of integrals [15]. 

We do not drop mixed integrals of the G K or F z type, for it is difficult to envision 
any basis set that avoids them. Although their omission in the SCF calculation 
does, indeed, seem small, we have found them to have a very important effect in 
the calculation of excited state transition energies, and in the calculation of 
correlation energy. 

With these approximations, the formation of the Fock matrix is proportional to 
the number of integrals calculated, roughly n 2, where n is the size of the atomic 
orbital basis. Execution time of the SCF step is thus governed by the repeated 
solutions (diagonalizations) of Eq. (4). 

3. Specification of Parameters 

3.1. Basis 

Equations (6) are general for a basis set of functions that display INDO. Insofar 
as the integrals of Eqs. (6) can be obtained empirically we need never specify the 
exact nature of the basis that yield Eqs. (2) and (3), and the value of the non-zero 
integrals. All integrals, however, cannot be found empirically for this work and as 
in the original CNDO and INDO model of Pople and co-workers [4, 5] we choose, 
for the present, a basis of Slater Type Orbitals (STO's), then envision them as 
symmetrically orthogonalized to one another, or midway along a bond "cut  o f f "  
in such a fashion as to make Eq. (2) reasonable [t6]. Since the values of two- 
electron matrix elements from such a basis does not seem to vary greatly from their 
value obtained with STO's (one-centre integrals are increased while two-centre are 
decreased, leaving the sums of Eq. (6) nearly constant [17]), the latter, much simpler 
evaluation is used. This is the conventional choice for the CNDO/2 and INDO/2 
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methods, but methods that are accurate in reproducing electronic spectra [18-20] 
and the popular MINDO methods [21, 22] choose these integrals and their 
functional form semi-empirically. 

A basis set of single Slater-type orbitals (STO) is characterized by the choice of 
exponential constants. For hydrogen a value of 1.2 is taken. For elements of the 
first and second rows we use the exponents derived from Slater's rules [23], as do 
the original CNDO and INDO methods. More accurate values are available from 
the work of Clementi and Raimondi [24], but our results prove relatively insensitive 
to such minor changes. 

For the elements of the third row, however, the exponents derived from Slater's 
rules are questionable. Also, single Slater orbitals are known not to be accurate 
representations of the d functions [25-28], as they concentrate too much electron 
density in the bonding region, causing an overestimation of the effective overlap, 
and the density beyond the bonding region falls off too rapidly with distance. 
Although linear combinations of STO's (" multiple-~" functions) are desirable for 
describing any atomic orbital, it appears that they are essential for describing the 
3d orbitals. Nevertheless we would like to retain the simplicity of "single-~" 
functions, as adopting multiple-~ representations greatly increases the length of 
the calculations, and is not in keeping with the spirit of the previous approximations. 

In adopting this approach we realize that we cannot accurately represent the Hartree- 
Fock 3d functions everywhere, but we hope to be able to preserve the essential 
features, notably at R = 0 and in the bonding region. For R = 0, the functions 
are used in the evaluation of the F ~ integrals, and in the bonding region the 
functions are used to calculate the overlap integrals, which in turn are used to 
estimate the resonance integrals. 

Using 

F~ d) = 0.258138 ~3a(O) 

F~ s) = 0.200905 ~4s(0) (7) 

it is possible to calculate the best single exponents which will yield the F~ 
calculated from the Watson near-Hartree-Fock multiple-~ functions [25]. In 
order to match the Watson near-Hartree-Fock 3d functions in both the bonding 
region and at R = 0 using single-~ functions, we define ~aa as a function of the 
distance from the metal atom, R, and evaluate the exponent, ~3a(R), for the 
necessary R values. In doing this, we recognize that such a function may well not 
reproduce all the overlap interactions simultaneously, for in general, each of the 
(s I d~), (p~ 1 do) and (p~ ] d~) overlap integrals will suggest a different ~aa value 
for any given R. The single ~aa that we would wish to use for all overlap integrals 
is a weighted average of the three exponents which reproduce the Watson overlaps 
[29, 30]. A procedure which weights each of the three exponents by the appropriate 
overlap could be used, but we choose to weigh the (p~ [ d~) overlap by two, as it 
occurs twice in the calculation. From Table 1, it can be seen that the errors in the 
individual types of overlap are not large using single ~aa function for any given R. 
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Table 1. Nitrogen-metal overlap at various distances using the 3d values of Equation 8 

Overlap Percentage error a 
Distance 

Metal (in ]~) (s [ d~) (p~ [ d~) (p~ [ d~) s, do po, do p~, d~ 

Ti 1.50 0.2361 0.2172 0.1908 10.9 -23.5 11.0 
2.054 0.1346 0.1541 0.0727 6.8 -11.8 8.1 
3.00 0.0285 0.0376 0.0097 4.1 - 6.0 6.0 

Fe 1.50 0.1487 0.1757 0.1178 9.9 -16.8 ll.0 
2.054 0.0700 0.0958 0.0366 5.4 - 9.7 7.7 
3.00 0.0102 0.0154 0.0034 3.3 -4.7 5.7 

Zn 1.50 0.1024 0.1370 0.0797 6.4 -14.1 8.2 
2.054 0.0405 0.0606 0.0207 4.0 - 7.2 6.6 
3.00 0.0045 0.0071 0.0014 2.2 - 3.2 4.5 

Error = [Overlap (Watson) - Overlap (Single)] 
~ w t - ~  [ J 

Several functional forms for ~3a(R) have been examined to reproduce these single 
averaged exponents. Most successful is the simple form: 

[3a(R) = a + b/R for [aa(R) < [3a(0) 

~aa(R) = ~aa(0) elsewhere. (8) 

Although this form has the disadvantage of being discontinuous, it has the correct 
asymptotic behaviour and the greatest accuracy at 1.5 A, 2.054 A and 3.0 A of the 
simple forms we have tried. Table 2 gives the values of  the variables a and b, as 
well as the calculated exponential values. 

The use of  Eq. (8), perhaps, requires some further comment. It is chosen for 
simplicity, and merely as a trick to allow a single-~ representation of a multiple-~ 
function. That is, we envision that we are using the multiple-~ functions given by 
Watson, but are approximating the integrals by the use of Eq. (8). No further 
interpretation makes sense. 

Since a single value for ~4~ appears to be reasonably accurate at R = 0 and at 
R = 2.054 A, we adopt Zerner's "best  single" values [29]. We set the 4p exponent 
equal to that of  the 4s, in analogy with the first and second row elements. Alternate 
exponents are available from the work of Richardson, Powell and Nieuwpoort  [26] 
but these 4p functions prove too diffuse, leading in many cases to negative orbital 
electronic populations [29]. Labarre and co-workers [31, 32] adopt 4/)exponents 
even smaller than those of Nieuwpoort  in their CNDO/2 method for transition 
metals in order to reduce the 4p electronic populations. They have chosen, however, 
to compare their density over orthogonalized orbitals with the results of a popula- 
tion analysis from ab initio results, a procedure the validity of  which is suspect. We 
believe their 4p orbitals are too diffuse. 

Clack and co-workers [13] adopt the Zerner set of 3d and 4s = 4p exponents, after 
extensive comparative studies using Slater, Clementi's best single [24], and Burns' 
[33] exponents. This introduces an error in the evaluation of the one-centre 3d 
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Table 2. Constants for the functional form a + b/R of (3a(R) and some resulting values 

Atom a b R 

1.50 2.054 f 3.00 4.00 oo 

Ca t 1.5097 0.8105 
Sc c 1.6102 0.8961 
Ti 1.71016 0.96428 d 2.3530 2.1796 2.0316 1.9512 t.7102 

e 2.3799 2.1678 1.9951 1.9081 1.7316 
V 1.81119 1.04854 d 2.5102 2.3217 2.1607 2.0733 1.8112 

e 2.5316 2.3137 2.1296 1.8289 
Cr 1.91367 1.10712 d 2.6518 2.4527 2 . 2 8 2 7  2.1905 1.9137 

e 2.6651 2.4509 2.2586 1.9262 
Mn 2.0152 1.17510 d 2.7986 2 . 5 8 7 3  2 . 4 0 6 9  2.3090 2.0152 

e 2.8061 2.5890 2.3892 2.0235 
Fe 2.11093 1.22250 o 2.9259 2.7061 2.5184 2.4166 2.1109 

e 2.9382 2 . 7 0 0 9  2.5015 2.3948 2.1208 
Co 2.21589 1.23008 a 3.0359 2 . 8 1 4 8  2.6259 2.5234 2.2159 

e 3.0362 2.8190 2.6192 2.2181 
Ni 2.31682 1.26242 ~ 3.1584 2 . 9 3 1 4  2 . 7 3 7 6  2 . 6 3 2 4  2.3168 

3.1544 2.9371 2.7374 2.3154 
Cu 2.41805 1.29449 d 3.2810 3.0483 2.8495 2.7417 2.4181 

~ 3.2725 3.0552 2.8565 2.4127 
Zn 2.51974 1.33244 d 3.4080 3 . 1 6 8 4  2.9639 2 . 8 5 2 9  2.5197 

3.3944 3 . 1 7 6 9  2 . 9 7 8 8  2.8716 2.5100 

From quadratic extrapolation. 
d Calculated from ~3a(R) = a + b/R. 
e ~3a averaged to match Watson overlap (see text). 
f Note that the ~3a(2.054) values are virtually the same as the Zerner "best single" exponents, 

Ref. [29]. 

integrals, F~ Although part  of  this discrepancy will be removed by cancellat ion 

between the one-electron and two-electron energy matrices, it will be sizeable for 

t ransi t ion elements with a large net charge. 

In  concluding this section, our  choice of t ransi t ion metal exponents give a nearly 

" exac t "  result for the only one-centred integral evaluated, F ~ [25]. At  bonding  

distances, the only integral evaluated will be the overlap integral and  the two- 

centred Cou lomb integrals. Here we will weight this overlap by empirical factors 
in forming the resonance integrals, reducing the effect of any errors. At  large inter- 

nuclear separation (where the overlap, and thus errors, are small anyway),  the most  
diffuse of the multiple-~ functions will dominate ,  and the parameter  " a "  of Eq. (8) 

is chosen to yield this correctly. F ~ is the accurate Watson  value by our use of 
Eq. (7). The two-centred Coulomb integrals at bonding  distances seem accurately 

represented, and at further distances are essentially 1/R. 

3.2. One-Centre  Core Integrals  

The one-centre core integrals U,~ are defined in Eq. (6). While these integrals could 
be calculated over an orthogonalized basis and  corrected by a core pseudo- 
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potential Vu, that simulates the repulsion of the inner shell electrons [34], con- 
ventional C N D O  and I N D O  methods relate these integrals to parameters obtained 
from atomic ionization potentials or from ionization potentials and electron 
affinities [4, 5]. They might also be obtained from atomic spectral terms [35], or 
from the orbital energies of  atomic calculations [6]. 

We choose to calculate core integrals from ionization processes, with the hope 
that such a choice will aid in the interpretation of our molecular orbital eigenvalues. 

An analysis of  the average energy of an atomic configuration yields [12, 35] 

I~ = E ( s  z- lpmdn) - E(sZpmd ~) 

= - U~s - (l - 1)F~ s) - m [ F ~  - ~G~(s,p)]  

- n[F~ d) - ~J-~G2(s, d)] 

I .  = E(s~pm-~d ") - E(s~pmd ") 

= - Uvv - (m - 1)[F~ p)  - ~ r 2 ( p ,  p)] 

. . . . .  I [V~ ~Gl ( s ,p ) ]  n[F~ d) ~-esGZ(p, d) -f6G3 a(p, d)] 

1~ = E(s'pmd "-~) - E(s~pmd ") 

Uaa - (n 1)[F~ d) - 2 rF2t d d) + F ' (d ,  d))] 

- l[F~ d) - ~ G 2 ( s ,  d)  

- m [ r ~  d) - ~ G ~ ( p ,  d) - ~ G 3 ( p ,  d)]. (13) 

The F integrals are calculated exactly for the basis, assuming the effective single 
exponential constant given in the previous section. The other Slater-Condon 
factors that occur in the theory are taken as semi-empirical parameters: they are 
presented in Table 3. 

The valence state ionization potentials I~ are estimated from atomic spectroscopy 
[39]. The complete set of  numerical values for the atoms up to and including Zn is 
given in Table 4. In this table, two sets of  ionization potentials are given for the 
transition metals Ca-Cu,  since both d "-  ~s and d " -  2s 2 are possible lowest average 
energy configurations of  these atoms. For most atoms, the choice of  the electron 
configuration is obvious, but for the transition metals it is not. 

We therefore define two sets of  processes dependent on the configuration of the 
transition metal a tom: 

Process 1 : Is 3d"-  14s -+ 3d "-  z 
Ip 3d ~- 14p ___> 3d . -  1 
In 3d ~ - 14s --~ 3d ~- 24s 

Process 2: /~ 3d"-24s  2 ~ 3 d ' - 2 4 s  

I ,  3d ~- 24s4p -+ 3d" -  24s 
Ia 3d" -  24s 2 --> 3d"-a4s 2 

These ionization processes yield the two sets of  values given in Table 4. Clack and 
co-workers [13] use Process 2 for all the transition metals in their CNDO and 
I N D O  methods, but an examination of the average observed configuration pro- 
motion energies, clearly shows that the d " -2s  2 configuration is not the lowest 
configuration in every case [29], and that this choice effects calculated ground state 
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Table 4. Ionization potentials (eV) for Eq. (13) 

31 

Atom - L  - I p  - h  

H 13.06 a 
He - -  - -  
Li 5.39 3.54 
Be 9.32 5.96 
B 14.05 8.30 
C 19.84 10.93 
N 25.69 14.05 
O 32.90 17.28 
F 39.39 20.86 
Na 5.14 3.04 
Mg 7.64 4.52 
A1 11.33 5.98 
Si 15.13 7.67 
P 18.66 10.78 
S 21.11 12.39 
C1 25.23 15.03 
K 4.34 2.73 

dn- 2s2b,e 

1.52 
1.74 
1.96 
2.05 
3.50 
4.11 
6. 
1.67 

d,~- 1 S b , e  

- L  - I ~  - I d  - L  - L  - I d  
Ca 6.03 3.96 - -  5.13 2.99 3.44 
Sc 6.72 4.20 8.16 5.83 3.43 4.85 
Ti 7.28 4.48 9.07 6.34 3.75 5.93 
V 7.73 4.77 9.89 6.71 3.95 6.77 
Cr 8.07 5.04 10.66 6.97 4.06 7.43 
Mn 8.35 5.27 11.45 7.15 4.10 7.99 
Fe 8.76 5.42 12.31 7.27 4.08 8.53 
Co 9.94 5.48 13.30 7.38 4.02 9.10 
Ni 9.13 5.41 14.46 7.51 3.93 9.79 
Cu 9.36 5.18 15.87 7.69 3.84 10.67 
Zn 3.54 4.77 17.57 - -  - -  - -  

a For H this corresponds to the ionization potential for an orbital 
exponent of 1.2. 

b For the associated ionization processes refer to text. 
~ From Ref. [29]. 

p roper t ies .  W i t h  very  l i t t le a m b i g u i t y  we choose  as lowes t  the d ~- is  con f igu ra t i on  

fo r  N i  and  Cu ,  and  the  d"-2s2 con f igu ra t i on  for  Ca,  Sc, Ti  and  Zn.  I t  is a lso l ikely 

tha t  the  d ~- is  con f igu ra t i on  is a p p r o p r i a t e  for  Fe  and  Co ,  and  the  d ~- 2s2 conf igura -  

t ion  fo r  V. F o r  Cr  and  M n  it is n o t  poss ib le  to  dec ide  the  con f igu ra t i on  because  

the re  are  s imply  t o o  few states k n o w n .  T h e  cho ice  o f  c o n f i g u r a t i o n  for  these two  

a t o m s  then  were  m a d e  a posteriori, tha t  is, f r o m  the  resul ts  o f  ac tua l  ca lcu la t ions .  

T h e  ca lcu la t ion  o f  g r o u n d  state geomet r i e s  seems def ini t ive  in this regard ,  wi th  

b o t h  a t o m s  then  be ing  ass igned the  d~-2s2 average  con f igu ra t i on  as y ie ld ing  the  
best  results .  
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3.3. The Resonance lntegral 

The "resonance" integral, or "bonding parameter" /3,~ is given in Eq. (6). Its 
exact evaluation over orthogonalized orbitals is often difficult and requires an 
exact specification of the basis [36]. In addition, the value of/3~ and its distance 
dependence is very sensitive to the details of the basis set orthogonalization. There 
exists, as yet, no complete theoretical formulation of the resonance integral, 
although several attempts have been made in this direction. At present, the formula- 
tion of the resonance integral is the weakest aspect of any zero differential overlap 
theory. 

We shall set one-centre resonance integrals to zero. This seems strongly suggested 
by the work of Seamans and Linderberg [37] and Zerner and Parr [16], and is 
conventional in INDO methods. 

For the two-centre one-electron integral we use [5, 38] 

fl~ = (5 A + / ~ ) & ~ / 2  

with 

&p, = Asp, 

S,, ,  = g~fp~A,~,~ + g~fp~A,o,~ (16) 

Ssd" = Asd 

S~a = g~fa~Ap~a~ + g~fa~Apoao 

Saa = gf~oAa~a6 + g~f~Ap=a~ + gof~Apoa~ 

where S~ is a weighted orbital overlap, g~ are the geometric factors necessary to 
convert from the local diatomic coordinate system to the molecular system, and 
f~ andf~ are universal weighting factors for sigma, pi and delta types of interactions. 

Considering an atom of s, p type basis, Eq. (16) relates the five possible diatomic 
t ! t interactions, ss', sp', pos, p~po, and p~p~ to the single parameter/3 a through the 

orbital overlap, and thus the basis actually used. Through the introduction of 
fp~ and fp~ we loosen this specificity, but, of course, at the introduction of two 
parameters. As f ~  and fpo will not be chosen to be distance dependent, "non- 
nearest neighbour"/3,~ will be related to nearest neighbour through the distance 
dependence of the STO overlap. This is a serious disadvantage but probably 
succeeds as the necessary symmetry requirements of ft,, are met by the overlap, and 
non-nearest neighbour fl,~'s are calculated small. Del Bene and Jaff6 [19] have set 
fp~ = 0.585 to obtain results from CNDO in good accord with molecular electronic 
spectra. Ridley and Zerner [18] introduced the addition factor f~o = 1.267 that 
gave improved results for n-•r* excitations. In addition Ridley and Zerner found 
that fp~ = 0.68 gave an improved triplet spectrum [20]. Without an extensive 
parameter search, we have setfp~ = 0.64, an average value, andfp~ = 1.267. The 
MO eigenvalue spectra obtained with such a choice, and especially the positioning 
of pi symmetry MO's with respect to those of sigma symmetry, compare well with 
model ab initio calculations for the systems we have examined. 
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When Eq. (11) is extended for use with d symmetry AO's it is no longer possible 
to use a unique flA for each atom. Two such parameters are used, one for s and p, 
and the other for d. Labarre et al. [31, 32], on the basis of population studies on 
transition metal complexes have suggested that, for transition metals, 

/3f~ #/3f~, 
Our choice of A fi4~,p r fi~a introduces a variance to hybridization between the two 
shells, but we find this a small price to pay for the greatly improved results. We set 
fa~ --fa~ = 1, and empirically search only the value of fl~a. We have not, as yet, 
examined in detail complexes of two transition metals, and defer comment on 
f~o, f ~  and f ~ .  

The fi~(D) values selected are given in Table 5. 

3.4. Nuclear Electronics Attraction 

According to Eq. (6) the nuclear attraction integral (x, IR~IIX~)appear in/?A~ and 
F,, .  For A = B fiA~ = 0, for reasons given in the previous section. For A -r B the 
integral (XA, tR5 I IX~) vanishes under the INDO approximation, Eq. (2). The integrals 

A - 1  A (Xu IRe ]X~) that occur in F~  are set equal to yAc 

A R - 1  A y a c  = (Xu l  c ])G) (17) 

Atom - f l ( s )  - f l ( d )  

H 9.0 
Li 9.0 
Be 13.0 
B 17.0 
C 22.4 
N 27.6 
O 34.2 
F 39.0 
Na 7.72 
Mg 9.45 
A1 11.3 
Si (13.0) 
P (15.1) 
S 16.0 
C1 18.0 
Ca - 2.0 
Sc 1.0 
Ti 1.0 
V 1.0 
Cr 1.0 
Fe 1.0 
Co 1.0 
Ni 1.0 
Cu 1.0 

11.4 
15.0 
18.0 
21.0 
23.0 
25.0 
28.0 
29.0 
30.0 

Table 5. The bonding parameter fi3(eV) ~ 

H - F  from Ref. [5], except C, N, O, Si and P from Ref. [43], 
Sc-Cu 3d parameter from Ref. [15]; All others have been 
obtained from this work. 
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as originally suggested by Pople and co-workers [5]. The ultimate justification of 
Eq. (17) is that such a choice provides a good balance between one- and two- 
electron terms. A partial theoretical justification comes from the observation that 
such a choice compensates for the orthogonalization of the basis that lowers the 
value of two-centred (x.[R~llx.) from that found over STO's and includes an 
additional lowering representing the core pseudo-potential necessary to compensate 
for the inner shell not explicitly considered [45]. 

3.5. Two-Electron Integrals 

The two-electron two-centred 
STO's as are the one-centre F ~ 

non-vanishing integrals ~',B are evaluated over 

4. The Self-Consistent Field 

Equations (6) are generally solved by the Self-Consistent Field (SCF) method that 
guesses a set of C k, then calculates pk, forms F k, obtains new C ~, and repeats this 
procedure until the energy and P~ have converged to within a specified tolerance. 
The P~ that is used for the new cycle is generally that obtained from the previous, 
although various extrapolation procedures have been devised to hasten convergence 
[30]. For transition metal complexes, the SCF procedure described above seldom 
succeeds in converging. We have adopted the following procedure that always 
seems to automatically lead to convergence within the UHF approximation. 

A starting set of MO coefficients are generated by diagonalizing a Hfickel-like 
matrix constructed as 

Fo~ = - i . ~ / 2  (is) 

or F is formed directly from pk obtained from a previous calculation. To prevent 
large charge buildup on the transition element and reduce diverging oscillation the 
3d metal MO's are searched for and their desired occupancy assured. Unless the 
starting P~ are quite good, this assignment is seldom in order of increasing MO 
eigenvalue: i.e., the aufbau principle most often leads to divergence. MO's are 
specified by a threshold value of the AO of interest (usually 3d) and the phase 
relation between two or more AOs (symmetry). After two or three cycles of such 
specification, the occupied orbitals generally stabilize in energy, and, most often, 
have the lowest orbital eigenvalues. This assignment of orbital occupancies also, 
of course, allows the calculation of excited states. 

The above procedure of electron assignment, by itself, seldom ensures convergence 
in these complexes. After an extensive investigation [30], we employ a simple 
"system interaction" method. 

Although the prescription given below seems complex, it is based on a very simple 
idea. Consider a plot of the diagonal elements of the density matrix obtained from 
diagonalizing F, against that assumed to calculate F. We wish P (assumed) equal 
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to P (obtained), or P(a) = P(o). Any two successive cycles, say the nth and (n + 1)st, 
yields two points, (P~(a), P"(o)) and (P"+l(a), P~+l(o)) on this plot. The inter- 
section of the line connecting these two points, with the 45 ~ line P(a) = P(o) forms 
the basis of our estimated density for the next cycles; i.e. P"  + 2(a) = P"  + 2(est). For 
simplicity of notation, P"  refers to the nth cycle, and it is understood that the 
procedure is performed on both ~ and/3 spin densities should the system be open- 
shell. 

We obtain the estimated density P '(est)  of the nth cycle from that obtained by 
solving the secular equation P~(o) and from P~-l (a)= P~-l (a)= P"-l (es t )  
according to 

P"(est) = fP"-~(a) + (1 - f)P~(o) (19) 

with 

f = ~ fAlA/l (20) 
A 

where lA is the number of valence basis functions on atom A, l the total number of 
valence basis functions considered in the sum and 

f~, = (P2(est) - P2(o))/(P2-l(a) - P2(o)) 
A 

P2, = ~ P~. (21) 
i 

For an orthogonalized set, P2(o) is the number of electrons on atom A, obtained 
by solving the secular equation (4) assuming P~-l(est) in forming F; i.e., 
F{P2-1(est)}-~{P2(o)}. Two successive calculations yield the two points 
(P~-2(est), P~-l(o)) and (P~-l(est), P2(o)). Assuming a straight line relation 
exists between these two points, and that we seek the point of intersection with 
this line and P2-l(est)  = P~-l (a)  = P2(o) for each atom A, gives 

P2(est) = [P2(o) - mAP2-1(est)]/(1 - mA) 

mA = [P~(o) - P2- ~(o)]/[P~- l(est) - P~,-2(est)] (22) 

fA = mA/(mA -- 1) (23) 

The following algorithm is adopted: 

1. For the first cycle P~ comes from a previous calculation, or the diagonaliza- 
tion of the Htickel matrix of Eq. (18). 

2. PZ(est) comes from Eq. (19) assumingf  = �89 
3. fA is obtained for each atom from Eq. (23) whenever ma, the slope, is negative. 

For mA positive the intersection of the P~,(est) = P2. + 1(o) line with the line 
through the two previously obtained points is sensitive to unknown details, and 
we set f a  = 0 (i.e., P2(est) = P~(o)). This is justified as experience shows that 
mA ~< 0 represents all diverging cases met in practice. 

4. f i s  formed from Eq. (20) with only atoms with ma ~< 0 included in the sum. 
5. Steps 3 to 5 are repeated until the desired convergence is obtained. Most often 
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f - +  0, representing the usual SCF procedure is obtained after close convergence. 
When f does not approach zero the convergence is not stable, and the single 
determinant description of the state forced to convergence is often not adequate. 

For comparison, we have tried this procedure or similar ones, to estimate each 
element of the density matrix separately, each diagonal element separately (with 
renormalization of off-diagonal terms), for each atom separately, and finally, the 
entire system as described above [30]. The last procedure appears the best, and has 
the advantage that Eq. (19) yields a P~(est) such that Trace P = N. We have also 
tried simple level shifting procedures, which, although effective, require more time 
per cycle. 

5. Spin Projection 

The eigenfunctions of the unrestricted Hartree-Fock procedure are not necessarily 
eigenfunctions of the spin operator S 2 [46]. Rather 

(WuhflS2l~F~hf) = (S2)uhf = s ' ( s '  + 1) + q -- T r ( P " P  e) (24) 

with s '  = sz = (p  - q)/2, one half the number of ~ electrons, p, minus the number 
of/3 electrons, q. 

In practice the amount of spin "contaminat ion" in most cases is very small, and 
we have adopted a simple spin annihilation to purify the state [47]. The amount 
of algebra involved in a simple annihilation is considerably less than that involved 
in a complete spin projection. 

We define the annihilator A~,+~ as 

A~,+~ = S 2 - (s' + 1)(s' + 2). 

Then 

W~hf= ~ C ~  
8=S" 

S2tF~ = s(s  + 1)~F~ (25) 

A, ,+l tF  T M  = ~ C j s ( s  + 1) - (s' + 1)(s' + 2)}tF~ 
$ = S '  

= - 2 ( s '  + 1)C~,tF~, + 2(s' + 2)Cs,+2tF~,+2 + . . .  

This yields 

(S2)a~ = 
(A~,+l'VuhflS2lA~,+l'V TM) 

(A.,+ I'F TM  I A~. + I~F ~ f )  

(S6)u~f - 2(s' + 1)(s' + 2)(S')uh, + (s' + 1)2(s ' + 2)2($2),,f 
= (S~)~hf -- 2(s' + 1)(s' + 2)~S2)~hf + (s' + 1)~(s ' + 2) 2 

(26) 

with (S2)~hf given in Eq. (24) and (S4)~hf and (S6)~r given in Ref. [47], Eqs. (44)- 
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(46), with "A" of that reference defined as s ' ( s '  + 1) + q. After annihilation, the 
densities are approximated by 

P G  = P~ - 2{P ~P~P~ - (P~P~  + PBP~) /2} /X  

P~a = P~ - 2 { P  eP~PB - ( p B p ~  + P ~ P e ) / 2 } / X  (27) 

X = 2s '  + 2 - q + Tr  ( P"Pe) .  

The above equations are derived from analysis of Eq. (25) that yield 

of(Cs+l)2 
< > ~ a = 2 <  >~,=-- (  >uhf+ [. ~ j -  , G fl 

( )~s~ ---- (~=he I IA,,+,'Fuhr>/(W~ ] A~,+lW'=h*> (28) 

and dropping terms of order ( C , + d C , )  2 and (Cs+dC, )  or smaller. Equations (27) 
are similar to those obtained by Amos and Hall for a single-sided annihilation, 
( ) .... except for the factor of two multiplying the second term of Pga and P2~ [48]. 
The spin density is then given by 

p = p=~ _ p~= ~_ p ~  _ pa  _ ( p ~ p e p ~  _ p e p ~ p ~ ) / X .  (29) 

In general, P ~  _~ P~ and P ~  ~ pe and dropping the higher order terms in 
Eq. (27) seems empirically justified. The spin density, however, magnifies these 
deficiencies, and Eq. (29) is not valid for calculating excited states when S~ is not 
equal to its maximum value; i.e., when G + d G  ~- 1. 

Examining the energy in somewhat greater detail we find 

W~,~ = ("yuhrtHlA,,+~Reu~r)= W~he- Q / 2 X  (30) 

with Q given by 

Q = 2 Tr (p,,papo~ + pBp,~pB _ 2p ,~pa)H 

+ ~ {(po~pep,~ + p B p r  _ 2pr + p,~)j~ 
ijk.m 

+ ( p ~  _ p~pB)yr _ pB)m~ _ (p~p~p~)jr 

_ (pBp~p~)y~pBm~ + (p~pB)j~(p~r + pe),nk}(imljk)" (31) 

Equation (28) for the energy correct up to order (G+~/Cs)  2 is 

W,~a = 2Wa~a - Wuhr/C~ + (C~,+~/C~,)2E~,+I (32) 

&,+,  -- (~,+aIHlW'~,+,)/(%,+a 1%,+,>. 

Writing E,, + 1 = W~hr + 8 yields 

Waa = W,~hr -  Q / X  + (C~,+z/C~,)28. (33) 

We will ignore the last term of Eq. (33) and use 

W,~,~ = W,~hr -  Q / X  (34) 

which is computationally very rapid. Since 8 _~ W=~ - Wu~r, the relative error 
introduced into the correction by such a truncation is (Cs,+ x/C~,) 2, which is usually 
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less than 1%. (For the chlorides of the next section, the error is of the order of 
5 • 10 -6 a.u.) Again, the exception is met when calculating states in which S~ is 
not its maximum value for the given number of open shells. 

Equation (34) is most rapidly evaluated using Eqs. (27). This yields 

Wa~ --- (Tr (Pa~ + P ~ ) H  + Tr Pg~F ~ + Tr PC~FB)/2 + Y 

Y : - { ~ m ( P " - P " P Z ) , ~ ( P " P " - P B ) m ~ ( i m ] j k ) } / X .  (35) 

In general, Y is small. 

Making use of Eqs. (25), we derive 

c L 1  = ( ( s ~ > ~ ,  - <s~>o~)/2(s + 1) 

C~+2 = (($2)=~ - ( $ 2 ) ~ ) ( 1  - C~+,)/4(2s + 3). (36) 

In the expressions above, terms of order (C~ + a/C~ + 2) 2 and higher have been dropped. 
Equations (35) are used to check the validity of Eqs. (34), (29) and (27). 

6. Some Results 

The present model and associated computer programs have been in use for over 
two years [30] by several groups. The results obtained are good when compared to 
ab initio calculations or to experiment. Calculations on the spectra of transition 
metal complexes [49, 50] 1 seem to be in excellent accord with experiment. We wish 
in this paper only to present some results on the chlorides of Fe, Cu and Co, and 
to compare these results to those obtained by other types of calculations, and to 
experiment. 

6.1. Iron Chloride FeC1; 1 

FeCI~ -1 is a tetrahedral complex with a bond length of 2.1955 • [51]. As is usual 
with Ta complexes the molecule is of high spin, in this case with five unpaired 
electrons. 

Calculations were performed at the experimental bond length and are reported in 
Table 6, along with the unrestricted X~ SW results of Noodleman [52]. The orbital 
energies for the MO's with both the a and/3 components occupied agree fairly 
well with the X~ results, but the energies of the a 3e and 10t2 MO's which have no 
occupied 13 counterpart are 0.54 and 0.60 a.u., respectively, below the X,  results. 
These orbitals are the principal 3d metal MO's (the 7t2 MO is taken as a ligand 3s 
orbital despite the high metal 3d character). In our results the 3d MO's are not the 
HOMO's but lie well below the ligand 3p MO's. This feature is characteristic of 
many Hartree-Fock calculations (for example, the following section on CuCl~-2). 

1 Ref. [50] is a comprehensive study of the excited states of CuC12 using the methods presented 
in this paper along with ab initio AE and CI calculations, and scattered wave Xa calculations. 



INDO Method for Transition Metal Complexes 

Table 6. FeCI4+I(Ta) results (a.u.) 

39 

10t2(3d) ~ 
3e(3d) ~ 
2tt 
9t2 
2e 
8t2 
8a~ 
7t2 
7a~ 

Noodleman [96] This work 
X.S.W. INDO/1 

e~ Nature e~ 
c~ /3 ~ /~ average 

-0.193 Fe3d -0.681(50) ~ [+0.126]b(69) a -0.282(58) a 
-0.218 Fe3d -0.747(98) a [+0.226]b(96) ~ -0.260(97) a 
-0.242 -0.234 C1 3p -0.303 -0.282 -0.292 
-0.279 -0.265 C13p + Fe3d -0.275 -0.316 -0.295 
-0.302 -0.270 C1 3p + Fe 3d -0.307 -0.311 -0.309 
-0.331 -0.300 Cl3 /7+Fe3d  -0.351 -0.336 -0.343 
-0.341 -0.328 CI 3p + Fe 3d -0.362 -0.306 -0.334 
-0.710 -0~ C1 3s -0.827(49) ~ -0.739 -0.783 
-0.721 -0.722 C1 3s -0.804 -0.776 -0.790 

Atomic charges: 
C1 - 0.406 ( - 0.664) o 
Fe + 0.624 ( + 1.654) o 

Metal orbital populations: 
3d 5.957 (5.951)" 
4s 0.457 (0.181) e 
4p 0.963 (0.214) e 

Percentage metal 3d character. 
b The t3 3e and 10t2 MO's are unoccupied. 

Mulliken population analysis. 

The X ,  SW one electron energies are ob ta ined  using Slater ' s  t ransi t ion state 
theory  [53], in which ha l f  an electron is wi thdrawn f rom each orbi ta l  in turn. Thus 
each value is obta ined  f rom a separate  calculat ion,  and  cor responds  directly to an 
ion iza t ion  potent ia l  ( IP);  that  is, to the energy required to remove an electron 
f rom " a  given o r b i t a l "  and  includes in an average way the reorganiza t ion  of  the 
system upon  ionizat ion.  This a p p r o a c h  seems to yield the classical M O  picture 
with the metal  3d M O ' s  as H O M O ' s .  This classical picture of  t ransi t ion metal  
orbi ta ls  has evolved as one general ly thinks in terms o f  orbi ta ls  which obey 

K o o p m a n s '  app rox ima t ion  when assigning the negative of  orbi ta l  energies to 
ion iza t ion  processes. 

As we have used the U H F  procedure ,  the calculated eigenvalues are " o r b i t a l  
energ ies"  in the sense that  they obey K o o p m a n s '  app rox ima t ion ;  that  is, in the 
absence of  molecular  re laxat ion  (the reorganiza t ion  of  the other  2n - 1 (or 2n) 
electrons) upon  the loss (or gain) of  an electron they represent  ioniza t ion  potent ia ls  
(or  e lectron affinities). However ,  ab initio calculat ions demons t ra te  that  the relaxa- 
t ion for  the loss o f  a " 3 d  e lec t ron"  is 0.3-0.5 a.u.,  which should be added  to the 
K o o p m a n s  potent ia l  to give an est imate of  the IP. Assuming  0.4 a.u. is a typical  
value of  the re laxat ion  for the removal  o f  an electron f rom a M O  of  pr incipal ly  
metal  3d charac ter  places our  IP est imates in reasonable  accord with the X ,  one- 
e lect ron energies. Such a b lanke t  est imate o f  the relaxat ion,  however,  must  be 
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viewed with caution, and the direct estimate of more accurate IP's  from a single 
calculation will be difficult. 

One method which may prove useful in the estimation of some ionization energies 
involves averaging the energies of  an appropriate pair of~  and 13 spin orbitals. When 
only the c~ spin orbital is occupied, as is the case for the metal 3d orbital(s), the 
averaging corresponds to an average of an ionization potential and an electron 
affinity. We can, however, view this average in a different fashion. Consider a 
doublet. The removal of an unpaired c~ electron corresponds to an ionization 
process. I f  we replace this electron in the corresponding /3 orbital we should 
recover the other degenerate component  of  the doublet. The energy to do this, 
- e ~  (occupied)+  e~ e (unoccupied), should be zero, but it will not because of 
relaxation. We define 2R as the amount  of  relaxation necessary to give a net change 
of energy equal to zero. That is, 

M(2F1/2)--> M+(1P0)-+ M(2P_l/2) - e~(occ) + e~ (unocc) + 2R = 0 

R = �89 - e~(unocc)) 

where 2s + 11~ labels the states of molecule M. I f  we then assume that the relaxation 
energy for the loss of  an electron is equal to that for the gain of  an electron, then 

IP~ = - ~ ( o c c )  + R = -�89 + ~e(unocc)) - ~(ave). 

This is a crude approximation, and it becomes even more so when the molecule is 
not a doublet as the final and starting molecular species are then of different spin 
multiplicities. This approach does, however, restore the classical picture with the 
metal 3d MO as H O M O  when the corresponding/~ metal orbitals are unoccupied. 
In this particular case, this approach leads to a reversal of the metal e and t2 
orbitals. While this averaging procedure is unlikely to yield accurate estimates of 
IP's  when relaxation is important,  it does allow for a better estimate than do the 
individual eigenvalues. 

In cases where accuracy is required, it will be necessary to carry out separate calcula- 
tions for each electronic configuration corresponding to an ionization process in 
order to determine the total energy, and thus the change in total energy. This 
process is found to work well provided the calculations on M and M + are of the 
same quality. There is some question of the accuracy of such a subtraction of such 
large numbers when both calculations are not of  the restricted HF  type. 

We have carried out calculations on FeC14 using a slightly distorted molecule of 
D2a symmetry to avoid symmetry breaking. For the high spin FeCI~-1 molecule 
we calculate that the lowest IP results from the removal of an ~ electron from a 
b2 MO that is principally ligand in nature, Table 7. The ZXEscF value is 0.269 a.u. 
which corresponds well to the Koopmans '  potential of -e~2(occ ) = 0.275 a.u., or 
-eb2(ave) = 0.299 a.u. for FeCI~ -1 or -e~2(unocc ) = 0.266 a.u. for FeC14, indicat- 
ing that there is little relaxation for this ionization process. We also attempted to 
remove the unpaired ~ electron from the metal b2 MO but we were not able to keep 
this state from mixing with the previously calculated state. 
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In order to examine further the order of the energies for the ionization processes 
b2(ligand) < b2(metal), we have also calculated the energies of  a series of  low spin 
configurations of FeC14. The calculated AEscF values are given in Table 7 along 
with the results of  the low spin FeC1/- 1 molecule. The removal of  an electron from 
the b2 MO of  ligand character appears to require less energy than the removal of 
the unpaired 3d electron, Fig. 2. The relaxation involved in the removal of the 
" 3 d "  electron is 0.345 a.u., a value in good accord with the estimates from 
ab initio results, and in reasonable accord with the value inferred from e(ave). 

When the energies of  high and low spin FeCli- ~ systems in the distorted tetrahedral 
geometry, Fig. 1, are compared, the high spin configuration is more stable by 
0.081 a.u. or 2.20 eV. For the tetrahedral FeC1/- 1 system we calculate an equilibrium 
bond length of 2.242 A which compares well with the experimental length of 
2.1955 A. The expectation value of S 2 before annihilation of the next highest spin 
component  of the high spin complex is 8.753297, after, 8.750002. The annihilation 
lowers the SCF energy by 0.0002 a.u. 

6.2. Copper Chloride CuCli -~ 

The calculations were carried out on the square planar geometry (D4h) using a 
Cu-C1 bond length of 2.26 A, which is an average of the reported experimental 
values for the square planar configuration, 2.30 .X, [55], and the tetrahedral one, 
2.22 A [56]. Comparison is made with the restricted ab initio results of Veillard et aI. 

[54] and the "revised I N D O "  results of van der Lugt [14]. This was one of the first 

Table 7. Low spin FeC1/-l(D2a) results (a.u.) 

a /3 average AEscr(state) 

4b2(xy) a -0.625(66) ~ [+ 0.199] b(78) ~ -0.213 0.280 (1A1) 
3b2 -0.256 -0.317 -0.287 0.269 (1A1) 

0.304 (aA1) 
361 -0.292 -0.294 -0.293 0.31 + 0.01QA2) 

0.30 + 0.01(aA2) 
4e -0.297 -0.296 -0.297 
2bl -0.301 -0.303 -0.302 
4ai -0.302 -0.301 -0.302 
3e -0.332 -0.325 -0.329 
2b2 -0.332 -0.344 -0.338 
3al -0.347 -0.344 -0.346 
2e -0.362 -0.351 -0.357 
lbl(x 2 _ y2)~ -0.632(97) ~ -0.618(96) ~ -0.625 
2al(z2) ~ -0.662(97) a -0.636(97) ~ -0.649 
le -0.756 -0.754 -0.755 
lb2 -0.779 -0.743 -0.761 
lal -0.799 -0.798 -0.799 

Percentage metal 3d character. 
b The/3 4b2 MO is unoccupied. 
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systems for which a Hartree-Fock calculation yielded the metal 3d orbitals firmly 
below the ligand 3p [571. An earlier Extended HiJckel calculation [58] on this ion 
had put the metal 3d orbitals in the typical ligand field position as the HOMO's.  

The results of  the three methods are reported in Table 8. Two ab initio calculations 
are presented: the enlarged Basis III yielding a total energy of  - 3472.284 a.u. and 
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Basis II yielding -3470.577 a.u. A comparison of orbital eigenvalues, however, 
indicates that they have stabilized with respect to improvements of the basis set. 
As the ab initio calculations are restricted, Koopmans'  theorem applies only to the 
open shell eigenvalues. The closed shell eigenvalues must be corrected by exchange 
terms before the orbitals correspond to "Koopmans '  orbitals". These adjusted 
values have been estimated for Basis II and are reported in parentheses in Table 8. 
For the MO's of ligand character this correction is quite small, and for the MO's 
of metal character the correction is 0.06 a.u. or less. As the unrestricted formalism 
directly yields Koopmans'  orbitals, our eigenvalues should be compared with the 
RHF  open-shell eigenvalues and the closed-shell eigenvalues corrected for exchange. 
Since this exchange correction appears small, a direct comparison fs not invalid. 
The eigenvalues obtained from the "revised I N D O "  model of van der Lugt need 
all be corrected for this comparison, but only the correction for the open-shell 6big 
orbital is sizeable, and this has been made in the table. 

The results of all three calculations are reasonably similar. There are four low-lying 
orbitals, 7a1~, 7e~, and 4b~g, that are principally C1 3s. Both the approximate 
calculations predict the splitting of these orbitals to be too large at about 0.14 a.u. 
compared to the ab initio result of 0.04 a.u. This is a common fault in most of our 
calculations and is caused by too large an interaction between the metal 4s and the 
ligand AO's. In addition, our results suggest that these C1 3s orbitals are inter- 
spersed with the occupied metal orbitals, Fig. 3, whereas the other two suggest a 
separation of about 0.1 a.u. This has been caused by a mixing of 3d into both the 
4b~g and 6bz~ orbitals in the UHF calculation, Table 8. In the ab initio results the 
metal orbitals are split by about 0.08 a.u. with the 6b~g(dx2_ y2) orbital lying highest 
in energy only after the exchange correction is made to the closed-shell orbital 
energies. Our calculated splitting of the metal orbitals is about 0.12 a.u. with the 
6big orbital lying lowest in energy. This also seems to be a feature of the U H F  
calculation rather than the model [50]. The splitting of 0.23 a.u. as calculated by 
the "revised I N D O "  model is probably too large, although such a conclusion is 
not certain until a dependent observable is calculated. 

In all calculations four doubly occupied orbitals, or their counterparts in the U H F  
calculation, can be classified as nearly pure metal orbitals. The singly occupied 
6b~g MO is nearly pure metal in the ab initio results, 73% in our results, and only 
49% in the "revised I N D O "  results. The ab initio and the INDO/1 results then 
show a gap of about 0.25 a.u. before the onset of 12 MO's that are principally 
C1 3p. The "revised I N D O "  results show a smaller gap of about 0.07 a.u. before 
the onset of these MO's. This discrepancy arises from the position of the 6bag 
orbital of that calculation. 

In comparing the results of a Mulliken population analysis it can be seen, Table 8, 
that our atomic charges are in good agreement with those obtained from the 
ab initio calculation using Basis III [59]. The balance of 4s and 4p, however, is not 
the same. The calculation of a negative charge for the Cu atom in the "revised 
I N D O "  results is not in agreement with our results, and indicates less metal back- 
bonding to the ligands. A direct comparison between the "revised I N D O "  results 
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and the ab initio results cannot be made, as the former refers to the charge calculated 
directly from the Fock-Dirac density over an orthogonalized basis [59]. 2 

In all these calculations there are two notable features in the ordering of the orbitals, 
all of which should obey (neglecting relaxation), or nearly obey, Koopmans'  
approximation. The first of these is the fact that the ligand 3p orbitals lie above the 
metal 3d orbitals; the second, that there is a singly occupied 6bzg MO below many 
of the doubly occupied levels. Neither result can be considered as "conventional" .  
The first apparent contradiction in light of Koopmans'  approximation has been 
discussed in terms of the relaxation energy. Even so, as the net charge on each of  the 
C1 atoms is calculated to be nearly - 1 from either the ab initio or INDO/1 results, 
the loss of an electron from orbitals localized on the ligands is an attractive alterna- 
tive to the loss of an electron from an already positively charged Cu atom. The 
second feature of a singly occupied orbital lying up to 0.4 a.u. below other doubly 
occupied levels can be understood from an examination of two electron terms. If 
the energy involved in the removal of an electron from the HOMO were the same 
as that required to pair two electrons in the 6b~ MO, then the net gain in energy 
would be the eigenvalue difference (this neglects changes in the exchange energy, 
but this should be small), making the process favoured. However, the Coulomb 
repulsion between two electrons in the HOMO, which is a very delocalized orbital, 
is unlikely to be greater than 0.2-0.3 a.u., while the Coulomb repulsion between two 
electrons in the 6bzg MO, which is nearly pure metal and thus very localized, is 
about 1.0 a.u. Thus the process is not favoured and the 6big MO remains singly 
occupied in spite of the low eigenvalue. 

The fact that the 6bag MO has the lowest energy of the "metal  3d"  orbitals in our 
results and yet is the singly occupied orbital rather than, say, the 8alg(d~2) with a 
higher energy suggests that the easiest metal orbital to remove an electron from is 
the 6b~g; that is, that the relaxation for the removal of the electron from the 6b~g 
orbital is somewhat larger than the relaxation from the other metal-like MO's. 
Thus, although our eigenvalue ordering is 

the very presence of the hole in the dx2_~2 MO suggests that the electrons are 
removed in order of ease 

dx~ < d=, dy~ < a.2 < ax2_~2 

This is in agreement with the order suggested by Figgis [60] to account for the 
magnetic and spectral properties of square planar complexes, and with the corrected 
eigenvalue ordering of the restricted calculations of Veillard et al. and the ordering 
obtained by van der Lugt. 

2 For this comparison we assume that our basis is a L6wdin symmetrical orthogonalized one, 
and make the transformation back to Slater type orbitals. The justification for such an assump- 
tion, however, is weak, and we view the results of the Mulliken population analysis with some 
reservations; see, e.g. Ref. [17]. 
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Table 9. Ionization 
calculations (a.u.) 

potentials of CuCli-2 from 

A. D. Bacon and M. C. Zerner 

/XEscF 

Electron 
removed State AEscF - e~(occ) - e~(ave) 

blg(ligand) 1A19 -0.014 -0.022 0.020 
blg(ligand) aAlg 0.048 0.061 0.020 
a29(ligand) 1B2g 0.032 0.029 0.027 
a29(ligand) 3B29 0.025 0.026 0.027 

The AEscr values for the removal of an electron from the 5b1~ and 2a2g MO's which 
are of ligand character are given in Table 9. These values compare quite well with 
the -e~ (occ) values indicating that the relaxation for the removal of an electron 
from an orbital of ligand character is again small. The AEscF value of 0.039 a.u. 
for the removal of an electron from the 2a2g ligand MO is in good accord with the 
ab initio result of 0.056 a.u. We were unable to calculate the energy of the 1Azg 
state corresponding to the removal of the unpaired electron from the 6b~g MO. The 
ab initio calculation did not have this difficulty for this particular bzg MO, and 
Veillard et al. report an IP of 0.110 a.u. 

In both the ab initio and INDO/1 results the lowest IP is due to the loss of an 
electron from a molecular orbital which is principally ligand in nature, Fig. 3. 
Upon the loss of an electron from a " d  MO" ,  sizeable relaxation is found and IP's 
of  about 0.1 a.u. are estimated. Thus, even though the difference between the ligand 
and metal orbital eigenvalues is large, the estimated differences of IP's are quite 
small making it difficult to order the ionization processes from these calculations. 
An interesting feature of the ab initio AEscr calculations, in contrast to the exchange 
corrected MO eigenvalue ordering, is that the loss of an electron from the 2b2g(d,~) 
orbital appears to require less energy than the removal of the unpaired electron 
from the 6b~o orbital. This implies a reversal of our usual concepts of the metal 
orbital ordering in a D4~ ligand field, but the difference is sufficiently small 
(0.007 a.u.) that it may well be a result of the mechanics of the calculation, rather 
than a real result. 

For  the equilibrium bond length of the D~h system we calculate a value of 2.255 A 
which compares very well with the experimental values of 2.30 A given for 
(NH4)2CuC14 [55] and 2.265 A given for [(C6Hs)CH2CH2CH3]2CuC14 [61]. For 
the distorted tetrahedral complex we calculate a bond length of 2.260 A, to be 
compared with values ranging from 2.22 A [56] to 2.26 A [62]. An estimate for 
the isolated anion of 2.283 A has been made from an analysis of vibrational 
structure [63]. 

We find that the D2a molecule is lower in energy than the D4h system by 0.55 eV. 
We calculate that the observed distortion from Ta symmetry found in Cs2CuCI~ 
with an angle of 130 ~ [62] is stable relative to the Ta geometry by 0.06 eV. 
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6.3. Cobalt Chloride CoC14 -2 

The calculation was carried out on the ~A2 ground state of CoCl~ -2 using Ta 
symmetry and a Co-C1 bond  length of 2.252 A [64]. The results are compared in 

Table 10 with the restricted ab initio results of Hiller, Kenduck,  Mabbs  and 

Garne r  [64]. As in the CuCI~ 2 results, we find that the unpaired t2 MO's  are no t  

the H O M O ' s  and  that  they lie at much lower energy: we surmise that the Cou lomb 

repulsion energy is sufficiently large as to main ta in  these " ho l e s "  below doubly 

occupied l igand MO's.  Figure 4 shows that the posit ion of these metal 10t2 MO's  

causes the 9t2e MO's  to be pushed up relative to the fl MO's ,  and the 7t2~ MO' s  

to be pushed down. The end result of  this is that the 9t2 average eigenvalue lies 

above the 3e and 2tl average eigenvalues. We also calculate somewhat  less 3d 

character in the 10t2 MO's  and correspondingly more 4p character. 

By again using a relaxation value of about  0.4 a.u. (or 0.44 a.u. as suggested in 

Table 10 compar ing the ~ eigenvalue with the average eigenvalue) for the removal 

of a 3d electron and assuming the relaxation for the removal of an electron from 

a ligand orbital is small, the more classical ordering of the metal, l igand IP 's  is 

restored. 

Compar i son  of the Mull iken popula t ion  analysis shows that  very good agreement 

is obtained for the atomic charges, but  that for the Co a tom the 3d and 4p balance 

Table 10. CoCI; 2 results (a.u.) 

This work, 
Ab initio [99] INDO/1 
(restricted) si 
8g C~ fl average 

10t2(3d) ~ O. 1019(96) - 0.420(65) 
2tl - 0.0862 - 0.064 
3e - 0.0984 - 0.068 
9t2 - 0.1123 - 0,040 
8t2 - 0.1409 - 0.106 
8al -0.1809 -0.118 
2e(3d) ~ - 0, 3505(97) - 0.419(98) 
7t2 - 0.6837 - 0.548 
7a~ - 0.6959 - 0.549 

Atomic charges: 
Cl [-0.84] ~ -0.606 [-0.832] ~ 
Co [+1.36] ~ +0.422 [+1.33o] ~ 

Metal orbital populations: 
3d [6.97] ~ 7.147 [7.138] ~ 
4s [0.29] o 0.444 [0.201 ] ~ 
4p [0.51] ~ 0.984 [0.333] c 

[+ 0.538] b(68) + 0.060(67) 
- 0.062 - 0.063 
- 0.064 - 0.066 
- 0.068 - 0.054 
-0.109 -0.108 
-o.111 -o.115 
- o.351(98) - 0.385(98) 
-0.508 -0.528 
- o. 544 - o. 546 

a Percentage Co 3d character. 
b 10t2 fl MO is unoccupied. 
c Mulliken population analysis. 
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Fig. 4. Molecular orbital diagram 
for CoClg z. ~' indicates the Co 
" 3 d "  orbitals. All other orbitals of 
the diagram are occupied 

is not in as good accord [59]. However, the ab initio calculation has a rather poor 
representation of the 4s and 4p AO's using only a single Gaussian function for 
each. 

The eigenvalue of S 2 for this complex before spin annihilation is 3.750994, after, 
3.750000. The annihilation has lowered the total energy by 0.0002 a.u. 
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Appendix 

Below are listed all integrals that  are included by the I N D O  model  outlined in this 
work,  and that  are required to preserve rotat ional  invariance. The abbrevia t ion 
used is 

0 = s 1 = p x  2 = p ~  3 = p ~  

4 = d ~ 2  5 = dx2_v2 6 = d x v  7 = d x ~  8 = d v ~  

There are other non-vanishing integrals under  the I N D O  model,  such as (04/00), 
etc., but  these integrals are small, and their exclusion does not  introduce rotat ional  
variance. They are all of  Slater 's " R "  type [65]. 

An example of  the impor tance  of  the mixed I N D O  terms that  are kept  can be seen 
in ferrocene [49]. The lowest lying singlet excitation is calculated as ~E~(d~2 --+ d,~) 
at  22,000 c m - L  The four  states resulting f rom dx2_~2, d ~ - - ~  d ~ ( =  d~) are cal- 
culated nearly degenerate at  28,000 cm -~, before configurat ion interaction (CI). 
These states then interact  through (57/68), and after CI  the resulting states, o f  
1 ~ # 1 Jt ,~= and E1 symmetry,  are calculated split by 8000 c m - 1  in reasonably good accord 
with the experimental  value of  7000 cm-1 .  Averaging over classes of  integrals to 
avoid these mixed terms would give a very different assignment  of  the singlet 
absorpt ion  spectrum of  ferrocene. 

( 0 0 / 0 0 )  = fo(ss)  
( 0 1 / 0 1 )  = ( 0 2 / 0 2 )  = 

( 0 4 / 0 4 )  = ( 0 5 / 0 5 )  = 

( 1 1 / 0 0 )  = ( 2 2 / 0 0 )  = 

( 1 1 / 1 1 )  = ( 2 2 / 2 2 )  = 

( 1 2 / 1 2 )  = ( 1 3 / 1 3 )  = 

( 1 4 / 1 4 )  = ( 2 4 / 2 4 )  = 

( 1 4 / 1 5 )  = ( 1 6 / 2 4 )  = 

( 1 5 / 1 5 )  = ( 1 6 / 1 6 )  = 

= ( 3 8 / 3 8 )  = 

( 1 6 / 2 5 )  = - 3Gl(pd)  

( 1 7 / 3 4 )  = ( 2 8 / 3 4 )  = 

( 1 7 / 3 5 )  = ( 1 8 / 1 8 )  = 

= ( 3 6 / 3 6 )  = 

( 2 2 / 1 1 )  = 

( 2 5 / 2 4 )  

( 2 6 / 1 5 )  

( 2 8 / 1 7 )  

( 2 8 / 3 5 )  

( 3 4 / 3 4 )  

( 3 7 / 1 4 )  

( 3 8 / 2 5 )  

( 4 4 / 0 0 )  

( 4 4 / 1 1 )  

(03/03) = Ga(sp) 
(06/06) = (07/07) = (08/08) = G2(sd) 
(33/00) = Fo(sp) 
(33/33) = Fo(pp) + 4F2(pp) 
(23/23) = 3F2(pp) 
Gl(pd) + 18Ga(pd) 

(26/14) = - v/-3G~(pd) - 3~/303(pd) 
(17/17) = (25/25) = (26/26) = (28/28) = (37/37) 
3Gl(pd) + 24Ga(pd) 
+ 21Ga(pd) 

2~/-3Gl(pd) - 9~/-3G3(pd) 
(18/27) = (18/36) = (27/27) = (27/36) = (35/35) 
15G3(pd) 

(33/11) = (33/22) = Fo(pp) - 2F2(pp) 

= V~O,(pa) + 3V~C3(pd) 
= 3G~(pd) - 21G3(pd) 
= (37/15) = (37/26) = (38/16) = 3Gl(pd) - 6G3(pd) 
= - 15G3(pd) 
= 4Gl(pd) + 27G3(pd) 

= (38/24) = -a/-3Gl(pd)  + 12~/-3G3(pd) 
= -3Gl(pd) + 6Gs(pd) 
= (55/00) = (66/00) = (88/00) = Fo(sd) 
= (44/22) = Fo(pd) - 2F2(pd) 
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(44/33)  = 

(44/44)  = 

(45/11)  = 

(45/22)  = 

(45/45)  = 

(47/13)  = 

(47/47)  = 

( 5 5 / 1 1 )  = 

(55/33)  = 

(55/44)  = 

(56/56)  = 

(57/13)  = 

(57/47)  = 

(57/57)  = 

(58/23)  = 

(58/48)  = 

(58/67)  = 

(66/55)  = 

(68/57)  = 

(77/44)  = 

(77/45)  = 

(77/55)  = 

(88/45)  = 

I n  t h e  a b o v e ,  

Fo = F ~ 

Fo(pd) + 4F2(pd) 
( 5 5 / 5 5 )  = ( 6 6 / 6 6 )  = ( 7 7 / 7 7 )  = ( 8 8 / 8 8 )  

Fo(dd) + 4F2(dd) + 36F4(dd) 
( 4 6 / 1 2 )  = - 2 @ - 3 F 2 ( p d )  

2,v/-3F2(pd) 
( 4 6 / 4 6 )  = 4G(dd) + 15G(dd) 

( 4 8 / 2 3 )  = V'-3G(pd) 
( 4 8 / 4 8 )  = G(dd) + 30G(dd) 
( 5 5 / 2 2 )  = ( 6 6 / 1 1 )  = ( 6 6 / 2 2 )  = ( 7 7 / 1 1 )  = ( 7 7 / 3 3 )  = ( 8 8 / 2 2 )  

( 8 8 / 3 3 )  = Fo(pd) + 2Fdpd) 
( 6 6 / 3 3 )  = ( 7 7 / 2 2 )  = ( 8 8 / 1 1 )  = Fo(pd) - 4 F d p d )  

( 6 6 / 4 4 )  = Fo(dd) - 4 F d d d )  + 6 F ~ ( d d )  

3 5 G ( d d )  

( 6 7 / 2 3 )  = 

( 6 7 / 4 8 )  = 

( 5 8 / 5 8 )  = 

- 3F2(pd) 

(68/13)  

(68/47)  

(67/67)  

= ( 7 8 / 1 2 )  = 3F2(pd) 
= ~ / S F 2 ( d d )  - 5~/$F,(dd) 
= ( 6 8 / 6 8 )  = ( 7 8 / 7 8 )  = 3Fddd) + 20F4(dd) 

-v ' -JFdda)  + 5V'SF4(dd)  
- 3F2(dd) + 15G(dd) 
Fo(dd) + 4F2(dd) - 34F4(dd) 
3F2(dd) -  15F,(dd) 
(88/44) = Fo(dd) + 2Fddd) - 24G(dd) 

(78/46) = - 2a/3F2(dd) + lOx/3F4(dd) 
(77/66) = (88/55) = (88/66) = (88/77) 
Fo(dd) - 2F2(dd) - 4F4(dd) 

2 ~ / ~ & ( d d ) -  10~/gF~(dd)  

al(sp) = 61(sp)/3 
G2(sd) = G2(sd)/5 
Ga(pd) = Ga(pd)/245 
G~(pd) = GZ(pd)/15 
F2(pp) = r2(pp)/25 
F2(pd) = F2(pd)/35 
G ( d d )  = F~(dd)/49 
F4(dd) = F4(dd)/441 

a n d  t h e  s u p e r s c r i p t e d  i n t e g r a l s  a re  as  de f ined  in  Ref .  [65]. 
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